
Box-Trees and R-Trees

with Near-Optimal Query Time

Pankaj Agarwal - Duke University

Mark de Berg - Utrecht University

Joachim Gudmundsson - Utrecht University

Mikael Hammar - Lund University

Herman Haverkort - Utrecht University

0



Box-Trees

• each leaf nodes stores a geometric object

• each internal node:

– has two children (or: O(1) children)

– stores for each child the bounding box of all
objects in the child’s subtree

2D Example:

1



Applications

Box-trees store geometric data (2D, 3D, higher-D):
maps, CAD-models, etc.

Applications in:

• geographic information systems (e.g. point
location)

• computer graphics (e.g. visibility queries)

• virtual reality (e.g. collision detection)

• robotics

• motion planning

Examples:

Point location Nearest neighbour

Collision detection or
Range searching

2



Pros and cons

Advantages:

• low storage costs

GIS-databases and CAD-models can be very large
– storage efficiency is critical; constants matter

• simple to implement

• flexible

In many applications, many different types of
objects must be stored and different types of
queries are done

• usually good performance in practice

Disadvantages:

• no guarantee on performance

query time depends on the way the tree is built –
little theoretical work has been done about
efficient constructions

3



Rectangle-Intersection Queries

Report all objects intersecting query rectangle R:

1. Check the bounding boxes stored at the root to
see if they intersect R;

2. For each bounding box that intersects R,
recursively visit the corresponding subtree – if that
is a leaf, check the corresponding object and
report if it intersects R.

R

Running time:

≈ number of nodes visited
= number of bounding boxes intersecting R.

4



Known results

n = total number of input rectangles
(object bounding boxes) in box-tree

k = number of input rectangles intersected by R

Lower bounds:

• De Berg et al. (2000):

– input: disjoint unit cubes in d dimensions

– query ranges: very thin/flat rectangles

– bound: Ω(n1−1/d + k)

Upper bounds:

• A box in d dimensions can be represented by a
point in 2d-dimensional ‘configuration space’.

(x1, y1)

(x0, y0)

(x0, y0, x1, y1)

Determine which boxes are grouped together by
partitioning the representative points using a
kd-tree. Result: O(n1−1/(2d) + k)

• De Berg et al. (2000):

– input: rectangles in 2D

– query range: rectangle with relative width w

– bound: O(log2 n + (w + k) logn)
(Θ(n) in the worst case)

5



Our contribution

Lower bounds:

• Ω(n1−1/d + k) also in the following case:

– input: intersecting almost-unit-almost-cubes in
d ≥ 2 dimensions

– query ranges: points

• Ω(n1−1/d + k) also in the following case:

– input: disjoint almost-unit-almost-cubes in
d ≥ 3 dimensions

– query ranges: cubes

Upper bounds:

• Better analysis of configuration space approach:

O(n1−1/d + k logn) for point and rectangle queries

• After small modification of the construction:

Θ(n1−1/d + k) = optimal

• New construction for (almost) disjoint input in 2D:

O(
√

n logn + k) for rectangle queries
O(log2 n) for point queries

• Variant of this construction:

O(log2 n + k) for queries with rectangles of
bounded aspect ratio

6



Lower bound intersecting input

Theorem: for all n, there is a set of
almost-unit-squares in 2D such that in any box-tree on
this set, a point query with result ∅ takes Ω(

√
n) time

in the worst case.

Proof:
√

n upper
right corners

√
n lower left

corners

input boxes are all combinations of lower left corner
with upper right corner (n boxes)

• any box-tree has Θ(n) bounding boxes of pairs

• each intersects one of O(
√

n) query points

• at least one query point gets Ω(
√

n) intersections

Generalises to higher dimensions: Ω(n1−1/d)

7



Lower bound disjoint input

Lower bound holds also for disjoint input in 3D:
start with 2D-construction on n2/3 almost-squares.

n1/3 upper
right corners

n1/3 lower left
corners

use 3rd dimension to make disjoint almost-cubes
(query points become edges of large cubes),
line up n1/3 such sets with query points in between

=⇒ each of Θ(n) internal boxes intersects one of
O(n1/3) query points/cubes =⇒ Ω(n2/3) query time

Result:

• shows polylogarithmic point-query times are
impossible without near-linear range-query time

• generalises to higher dimensions: Ω(n1−1/d)

• does not work in 2D

8



Kd-Interval-Trees

• on each level, cut such that at most half of the
input lies to one side, at most half lies to the
other side

• store each side recursively

• store intersected boxes in separate substructures

• cut vertical on every odd level, horizontal on every
even level

A B
2

2

A

B

C D
3

1

1

C

D

3

9



Kd-Interval-Trees: substructures

Substructures for boxes intersected by a cutting line:
a binary tree on the order along the line

R

Analysis for search with query rectangle R:

• O(logn) bounding boxes may contain an endpoint
of R’s projection on the cutting line

• A bounding box in between the endpoints only
intersects R if there is a leaf node to be reported
in its subtree: O(k logn) bounding boxes

Total: O(logn + k logn)

10



Kd-Interval-Trees: query time

Analysis for the complete structure (rectangle query):

• known about kd-trees: only O(
√

n) kd-tree cells
may intersect the boundary of a rectangle

• for each of them, spend O(logn + k′ logn) in the
associated “intersected substructure”, where∑

k′ = k

Total: O(
√

n logn + k logn)

Analysis for the complete structure (point query):

• O(logn) cells may be visited

• spend O(logn) in each “intersected substructure”

Total: O(log2 n)

11



Priority nodes

(like a priority search tree)

In each subtree, store the leftmost, rightmost, topmost
and bottommost input objects as priority leaves
directly under the root.

Effect for rectangle queries:

• search time substructures improves to
O(logn + k logn)

• total search time improves to O(
√

n logn + k logn)

12



Conclusions

Results:

• lower bounds that hold with “normal” query
ranges

• an easy construction which achieves optimal query
time for range searching in box-trees on
overlapping input in any number of dimensions

• an easy construction which achieves near-optimal
query time for range and point searching in
box-trees on disjoint input in 2D

• generalisations of the bounds and efficient
conversions to R-trees

Open problems:

• Why do bounding volume hierarchies seem to
work well in practice, despite bad bounds?

– analysis under realistic constraints on input?

– analysis for approximate range searching?

• How do our box-tree constructions compare to
known heuristic approaches?

• How to deal with insertions and deletions?

13


