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Abstract

This paper is an excerpt from Chapter 1 of my PhD thesis
[Hav04], written to introduce my publications about bounding
volume hierachies [Aga02, Arg04, Hav04BG].

1 Computational geometry and
geometric data structures

Computational geometry is the area of algorithms research that
deals with computations on geometric objects. Examples of
such objects are points, lines and polygons in the plane—which
may represent a city plan—or balls, blocks and more complex
shapes in three dimensions—which may represent the interior
of a power plant. In these cases, the geometric objects repre-
sent physical objects in the real world. But this is not always
the case. For example, a database storing the age and salary of a
company’s employees can also be thought of as a database that
stores points in a two-dimensional space: each point represents
an employee, with one coordinate indicating the age and the
other coordinate indicating the salary of the employee. There-
fore, geometric computations are found in many applications
of computers: databases, computer-aided design, geographical
information systems, flight simulators, other virtual reality ap-
plications, robotics, computer vision and route planning are just
a few examples.

To do efficient computations on geometric objects, it is cru-
cial that we can store, search, and sometimes update, sets
of geometric objects efficiently. When the objects are one-
dimensional points, this is relatively easy: we can sort them
by their coordinate in that dimension, and put them in memory
in that order. This makes it possible to find points fast. It is like
looking up words in a dictionary: thanks to the ordering, we
can find a word without turning all pages one by one.

When an object cannot be described by a single point in a
one-dimensional space, it is less clear how to store a set of
objects effectively. For example, I have a collection of music
CD’s. I would like to order them by the year in which the mu-
sic was written, so that I can find all music from a particular era
fast. My CD’s usually contain several works of music written
in a range of years. This makes it impossible to characterise a
CD by a single point on a time line: a CD is rather like a group

of points, or like a segment of the time line. How should I order
my CD’s? By the oldest work on the CD, maybe? But then
even the most recent work might be put in the very first place
on the shelf, if it just happens to be on the same CD as the old-
est work. If I sort like this, how can I be sure of finding a work
from a certain era without checking all earlier CD’s too?

When geometric objects have more than one dimension, the
problem becomes even more difficult. But in many applica-
tions, a lot of questions about a set of geometric objects need
to be answered fast. For example, a flight simulator should not
need to scan the complete hard disk to determine if the plane
is going to hit a mountain in the next second. In such appli-
cations, it is essential that geometric objects are stored in such
a way that relevant objects can be identified quickly, while ir-
relevant objects are ignored without checking them one by one.
Often we can do this by sorting the objects into groups. If we do
this in a clever way, we can, hopefully, discriminate quickly be-
tween groups with potentially relevant objects and groups with-
out such objects. Therefore, finding useful groupings of objects
is a key issue in many problems in computational geometry.

A set of geometric objects that is sorted, partitioned into
groups and/or otherwise preprocessed, so that certain queries
about the set can be answered efficiently, is called ageometric
data structure. The goal of research into such data structures
is to make them as efficient as possible with respect to stor-
age space, the time needed to build the data structure, the time
needed to insert or delete objects, and the time needed to an-
swer queries. Examples of such queries are: which objects lie
(partly) inside a given viewing window? Or: which object is
closest to a given query point? Of course, we would like our
data structure to facilitate fast answers, not for just one partic-
ular query point or window, but forany query that might be
asked. One cannot usually expect to optimize for all of the ob-
jectives mentioned at the same time. In general, the faster the
queries, the larger the demands on storage, preprocessing and
update time.

We do not usually measure the running times of data struc-
ture algorithms by counting milliseconds. We could, of course,
but with computers getting faster all the time, this would make
our results outdated even before they are published. Rather we
ask the question: how well will a data structure be able to take
advantage of bigger and faster computers? To answer that ques-
tion, we analyse in what way the number of basic operations
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performed by the central processor depends on the input size
(the number of objects stored) and the output size (the number
of objects retrieved). The first is usually denoted byn, the sec-
ond byk. We will write that algorithms have a running time
of, for example,O(n) or O(n3). In the first case, the running
time is a linear function ofn. This means that if we can double
the speed of our hardware, this algorithm can process twice as
much data in the same time. In the second case, the running
time is a cubic function ofn, which means that our double-
speed computer will enable us to handle only 26% more data
with this algorithm. This means that even if the second algo-
rithm would be a little faster in practice on the current hardware,
the first algorithm is probably more promising in the future.

If the amount of data is so big that we cannot keep all of it
in main memory while working on it, we count the number of
disk accesses rather than the number of operations. In that case
we analyse how the running times depend on three parameters:
the input sizen, the output sizek, and the amount of data trans-
ferred in one disk access.

In the most basic form, geometric data structures store points
and we want to be able to retrieve, for any query range, the
points that are inside, or sometimes the points that are clos-
est to that query range. This type of data structures has been
well studied and structures have been developed for simplex
range queries, axis-parallel (hyper-)rectangular range queries,
circular or (hyper-)spherical range queries, and point queries.
With O(n) space, one can build a data structure forn points
in d dimensions that reports all points inside a simplex in time
O(n1−1/d + k) [Mat93], wherek is the number of points re-
ported. For queries with axis-parallel rectangles, one can use
the same data structure, or the much simplerkd-treewith the
same query time (see e.g. [Brg97KOS] for a description). With
more space, one can often get faster queries. For example, a
layered range treeanswers axis-parallel rectangle queries in
timeO(logd−1 n+k), usingO(n logd−1 n) space [Brg97KOS].
There are also other data structures whose query times depend
more heavily on the output size and less on the input size. For
more about data structures for points, see, for example, the sur-
vey by Agarwal and Erickson [Aga98E].

2 Data structures for object data:
bounding-volume hierarchies

Designing efficient data structures becomes significantly more
difficult if the objects stored are not points, but objects that have
some shape and size, such as line segments, balls or polyhedra.
Theoretically efficient solutions for such problems are often too
complicated and bear too much overhead to be useful in prac-
tice. It becomes even more difficult if we want a data structure
that supports multiple types of queries at the same time. One
can cheat, of course, by just taking a few data structures to-
gether and store each object multiple times: once in each struc-
ture. But this increases the storage requirements and also puts

Figure 1: Example of a bounding-volume hierarchy, using rect-
angles as bounding volumes.

on us the burden of maintaining several structures.

In practice, so-calledbounding-volume hierarchiesoften
provide a good solution. They are easy to implement, and
although a bounding-volume hierarchy forn objects does not
store more than2n pointers and geometric objects, it can be
used for different types of queries. A query in a bounding-
volume hierarchy does not go directly for the answer to the
query; rather it generates a set of candidate answers, which then
need to be checked one by one. In practice, the set of candidate
answers is usually small enough to make this approach efficient.
For a bounding-volume hierarchy to be useful, it should allow
fast generation of candidate answers, and it should select the
candidates such that they are likely to be true answers.

Below, I will first explain what a bounding-volume hierarchy
is and how it is used. After that, I will explain what issues have
to be addressed when designing a bounding-volume hierarchy.
I will then focus on a particular class of bounding-volume hier-
archies, namely R-trees, and give an overview of our results on
R-trees. To conclude, I will suggest a few subjects for further
research in this area.

2.1 Definition and usage

A bounding-volume hierarchy is a tree structure on a set of geo-
metric objects (the data objects). Each object is stored in a leaf
of the tree. Each internal node stores for each of its childrenν
an additional geometric objectV (ν), that encloses all data ob-
jects that are stored in descendants ofν. In other words,V (ν)
is a bounding volume for the descendants ofν. For an example,
see Figure 1.

Bounding-volume hierarchies can be used to do many types
of queries on the set of data objects. For example, the algorithm
in Figure 2 finds all objects that intersect a query rangeQ and
are stored in descendants of nodeν. To find all data input ob-
jects that intersectQ, start the algorithm with the root of the hi-
erarchy asν. The query will then descend into the tree, visiting
exactly those nodes whose bounding volumes intersectQ. The
bounding-volume hierarchy can also be used for other types of
queries, such as nearest-neighbour queries (see Figure 3).

The algorithms can easily be adapted to hierarchies with
leaves that store multiple data objects.

2



Algorithm Intersected(Q,ν)
1. for every childµ of ν
2. if V (µ) intersectsQ then
3. if µ is a leafthen {objectM stored inµ is a candidate answer}
4. if M intersectsQ then
5. reportM
6. else
7. Intersected(Q,µ).

Figure 2: Finding all objects that intersectQ. To find all objects that liecompletelyinsideQ, replace the intersection test in line
4 by a test ifM lies insideQ. To find all objects that completelycontainQ, replace the tests in line 2 and 4 by a test ifQ is
completely contained inV (µ), or in M , respectively.

Algorithm Closest(Q,ν)
1. smallestDistanceFoundSoFar←∞
2. P ← an empty priority queue
3. repeat
4. if ν is a leafthen { the objectN stored inν is a candidate answer}
5. if distance betweenN andQ < smallestDistanceFoundSoFarthen
6 . smallestDistanceFoundSoFar← distance betweenN andQ
7 . closestObject← N
8 . else
9 . for every childµ of ν

11. insertµ in P with priority (distance betweenV (µ) andQ)
12. ν ← the node with lowest priority inP ; let p be its priority
13. removeν from P
14. until p > smallestDistanceFoundSoFaror P is empty
15. return closestObject.

Figure 3: Finding the object closest toQ.

2.2 Designing bounding-volume hierarchies

When designing a bounding-volume hierarchy, we have to de-
cide what kind of bounding volumes to use, what the structure
of the hierarchy should look like, and how to order the data
objects in the tree.

The shape of the bounding volumes. The choice of bound-
ing volume is determined by a trade-off between two objectives.
On one hand, we would like to use bounding volumes that have
a very simple shape. Thus, we need only few bytes to store
them and intersection tests and distance computations are sim-
ple and fast. On the other hand, we would like to have bound-
ing volumes that fit the corresponding data objects very tightly.
Thus, we try to avoid going into subtrees that will not lead to
any object that satisfies our query. On one extreme, we could
use the full space as the bounding volume for everything. On
the other extreme, we would use the union of the data objects
as their bounding volume. Both extremes are pointless. In the
first case we would traverse the complete tree for every query;
in the second case, intersection tests would be just as complex
as doing a complete query.

In practice, the most commonly used bounding volume is an
axis-parallel (hyper-)rectangle—we will just call them boxes.

The minimum (best-fit) bounding box for a given set of data ob-
jects is easy to compute, needs only few bytes of storage, and
robust intersection tests are easy to implement and extremely
fast. Experiments have been done with a number of other
shapes though. Among them are the set-theoretic difference
of two boxes [Ary00], oriented—that is: non-axis-aligned—
bounding boxes [Bar96, Got96], spheres [Oos90] (with little
success), the intersection of a box and a sphere [Kat97], the
Minkowski sum of a box and a sphere [Lar00], a circular sec-
tion of a spherical shell [Krs98], pie slices [Bar96], and dis-
cretely oriented polytopes (k-DOP’s) [Jag90, Klo98], for exam-
ple octagons [Sit99] or bounded aspect ratio k-DOP’s [Dun99].

Circles and spheres seem to leave too little freedom to adjust
the shape to fit the objects inside. But some of the more com-
plex shapes might actually work well. It is difficult to get a clear
picture from comparitive studies on this issue. Some authors
who compared axis-aligned bounding boxes with discretely-
oriented octagons (in two dimensions) or oriented bounding
boxes (in three dimensions) reported that in the end, axis-
aligned bounding boxes often seem to work better, despite the
bad fit to the data; see Van den Bergen [Bgn99] and Sitzmann
and Stuckey [Sit99]. Sitzmann, however, also reported positive
results for octagon hierarchies on data consisting of randomly
oriented line segments. The right type of bounding volume
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might, in fact, depend on the input: some of the non-standard
bounding volumes are specifically aimed at fitting the triangles
used to approximate smooth surfaces in virtual reality applica-
tions. Finding the right type of bounding volume definitively
remains as a subject for futher study.

In our research, we decided to try to establish the best per-
formance that can be achieved with axis-aligned bounding-box
hierarchies, both from a theoretical and from a practical point
of view.

The structure of the hierarchy. Since a bounding-volume
hierarchy is a tree structure by definition, the main choice left is
to decide on the degree of the nodes, that is: the number of chil-
dren and/or input objects stored in a node. The optimal degree
depends on the way in which the bounding-volume hierarchy
is used. The cost of processing a node in the hierarchy is com-
posed of the costs of accessing the location of the node in mem-
ory, the cost of reading the node’s children pointers and their
bounding volumes, and the cost of the intersection or distance
computations on those bounding volumes. If the hierarchy is
stored on disk, the access cost tends to be high: the disk’s head
must be moved to the correct physical location. Once the disk
head is at the correct position, a complete block of data is read
into main memory at once. Computations on those data are rel-
atively cheap, since these are done in main memory. Therefore,
high-degree nodes that fill a full block of data are preferred. On
the other hand, if the hierarchy is stored in main memory, our
main concern is to keep the number of intersection or distance
computations down. For queries that do not yield too many an-
swers, this is best achieved by making many low-degree nodes.
For example, two nodes that are irrelevant to our query can of-
ten be skipped faster if we construct a parent node that gets
these two nodes as its children. A single distance computation
on the parent’s bounding volume may then reveal that we can
skip its two children without doing distance computations on
them. Of course, this potential advantage of having many low-
degree nodes only materializes if usually, the parent node will
indeed be skipped if both of its children are, and usually, we do
not need to go into both children after all. Whether or not this is
actually the case depends on the data, the queries, and the way
in which the data objects are distributed in the tree.

Another issue with regard to the structure of the hierarchy
is its height. If we want to be able to go from the root to any
data object fast, small height is a necessary condition, but not a
sufficient one. The main problem is that the bounding volumes
of a node’s children may intersect. If the object lies inside their
intersection, there is no way to tell which child has the object
as a descendant. However, small height may still be useful to
guarantee that update algorithms can run fast. Most algorithms
to insert or delete an object run in timeO(h), whereh is the
height of the tree. Small height is most easily guaranteed by
requiring that all leaves are at the same depth. This a suffi-
cient, but not a necessary condition, to guarantee that the tree
has heightO(logt n), wheren is the number of objects stored,

Figure 4: A set of rectangles for which an overlap-free hierar-
chy of degree two is impossible.

andt is the minimum degree of the nodes.

The distribution of the objects in the hierarchy. Finally, the
way in which the objects are distributed in the hierarchy may
have a huge impact on its performance. One of the major issues
is that overlap between bounding volumes in the same node
can make search paths branch and spread out into large parts of
the hierarchy. Therefore, it is important to keep the amount of
overlap small. Unfortunately, overlap cannot be avoided com-
pletely. Points can always be distributed among the different
parts of the hierarchy in such a way that the bounding boxes in
a node do not overlap, but with other objects this is not always
possible. Figure 4 shows a set of rectangles that does not admit
of an overlap-free hierarchy of bounding rectangles (or other
convex bounding volumes) with nodes of degree two. The only
way to avoid overlap is to cut data objects into smaller parts
(clipping), but this comes at a cost: it would take more storage
space, and while collecting the answers to a query, time may
be wasted retrieving pointers to objects which we had found
already through another part.

Moreover, minimizing the amount of overlap does not nec-
essarily lead to optimal query efficiency, as is illustrated by
the following example. In Figure 5, we divided the line seg-
ments into groups of four: each group corresponds to a node
just above leaf level in a hierarchy with nodes of degree four.
In the top figure, we did the grouping so that we minimize the
overlap between the bounding boxes of the nodes. A query with
the grey square will visit 8 nodes on this level. In the lower fig-
ure, the line segments are grouped in another way. A query with
the grey square will now visit only 4 nodes on this level.

If minimizing overlap is not enough to guarantee optimal
queries, then how should we distribute or group the objects in
the hierarchy? It is this issue that was the main subject of my
PhD research.

2.3 R-Trees

We restricted our study to hierarchies that use axis-parallel
boxes as bounding volumes. Extending the study to other types
of bounding volumes is an obvious subject for further research
but it lies beyond the scope of our work. Bounding-volume hi-
erarchies that use axis-parallel boxes as bounding volumes and
have nodes of high degree are also known as R-trees. The R-
tree was originally introduced by Guttman [Gut84]. His study
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Figure 5: Minimizing overlap does not always lead to optimal
query efficiency.

has inspired two decades of research about how to distribute the
data objects in an R-tree, some authors designing new distri-
bution algorithms from scratch, others suggesting optimization
heuristics to be used in conjunction with known methods.

R-trees are parametrized by the maximum degree of the
nodes, denoted byt in this paper. This parameter is set to
match the characteristics of the hardware used: usually the tree
is stored on disk, andt is chosen such that a node fills a full
block on the disk. For in-memory applications, smaller values
of t would be used. The minimum degree of the nodes is set
to a fixed fraction oft; in the R-tree variants studied it ranged
from 10% to 50% oft. R-trees usually store data objects in the
leaves only and have all leaves on the same level in the tree,
although some authors have designed variants where this is not
the case (e.g. [Agg97, Kan97, Ros01]).

Essentially three types of algorithms have been designed to
distribute the objects in an R-tree:

by repeated insertion: One defines an insertion algorithm that
strives to optimize the tree locally; a complete tree is built
by inserting the data objects one by one, e.g. [Ang97,
Bkr92, Bmn90, Grc98b, Ros01]. Usually, deletion algo-
rithms are provided as well.

by recursive partitioning: One defines an algorithm to dis-
tribute any number of data objects among up tot subtrees;
the tree is built by applying the partitioning algorithm re-
cursively top-down, e.g. [Agg97, Grc98a, Whi96]. The
resulting data structure can be maintained either by using
insertion and deletion heuristics as above (and, for exam-
ple, rebalancing the complete tree during quiet hours), or
by using the logarithmic method [Aga01APV].

by linear ordering: One defines a function that maps each
data object to a one-dimensional value; the tree can then
be built and maintained as a standard B-tree that uses the
function values as keys [Brg00, Bhm99, Kam93, Kam94].

For an extensive survey on R-trees, see Manolopoulos et
al. [Man03].

When comparing the query efficiency of R-trees built by such
algorithms, one should distinguish between a static environ-

ment (the tree is built once and not changed afterwards), and
a dynamic environment (the tree is continuously updated). In
a dynamic environment it may be very difficult to maintain an
“ideal” distribution of objects over the tree. The insertion of
an object can, in principle, change the ideal distribution a lot.
To allow for reasonably efficient update operations, one has to
relax the ideal a bit. As a result, static trees, built with a par-
titioning or a linear-ordering algorithm, usually allow for more
efficient queries than their dynamic counterparts or insertion-
based algorithms.

Despite the huge body of research on R-trees, until recently,
very little was known about the query times that can be guaran-
teed for worst-case data and queries. From Kanth and Singh
[Kan98] and De Berg et al. [Brg00] some lower bounds for
intersection queries with axis-parallel rectangles were known:
query times better thanΩ((n/t)1−1/d + k/t) can, in general,
not be guaranteed. Heren is the number of data objects,t is the
degree of the nodes,k is the number of object bounding boxes
intersected, andd is the number of dimensions. There were
no algorithms to construct R-trees that can guarantee to do any
query faster than a full traversal of the complete hierarchy, even
if there are no answers to be reported. The only results in that
direction were by De Berg et al. [Brg00], but they could guar-
antee fast queries only for relatively small query ranges. Other
research on R-trees was mainly experimental, or of a statistical
nature, making statements about expected query times under
certain assumptions on the distribution of the data and/or the
queries. To our knowledge, our algorithms [Aga02, Arg04] are
the first algorithms that construct R-trees that guarantee worst-
case query times better thanΩ(n) for all axis-parallel rectangle
range queries.

Note that in the bound mentioned above, as well as in all
results mentioned below,k is not the number of objects in-
tersected, but the number of data objectbounding boxesinter-
sected. Ifk would be the number of data objects intersected, it
would be very difficult to prove anything about the efficiency of
R-trees. Even if the objects are disjoint, their bounding boxes
may in the worst case intersect in a single point, leading to a
query time ofΩ(n/t). For an example, see Figure 6. In three
dimensions, there are sets of line segments such thatanyhier-
archy ofconvexbounding volumes on such a set, needsΩ(n/t)
time to answer a query with an axis-parallel line in the worst
case [Bar96]. However, even if the objects intersected cannot
be identified efficiently in the worst case, this is no reason to
give up on at least identifying the objectbounding boxesinter-
sected efficiently. From now on, we will assume that the data
objects stored in our hierarchies are in fact bounding boxes, and
k will be the number of such bounding boxes intersected by the
query range.

2.4 Our results

Given the fact that we use axis-parallel boxes as bounding vol-
umes and given the maximum degree of the nodes, we set out
to optimize the structure of the tree for fast intersection queries.
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Figure 6: All bounding boxes of these line segments overlap in
a single point. A query with that point needs to examine the
complete hierarchy.

We chose to optimize for intersection queries since such queries
are an important application to start with, and they are indica-
tive of the efficiency of some other types of queries as well.
For example, queries for objects intersecting a rectangle and
queries for objects contained in a rectangle visit exactly the
same nodes, and nearest-neighbour queries with a point visit
exactly those nodes which would be visited by a intersection
query with a circle centered on that point and just touching the
nearest neighbour. Therefore, a good performance on intersec-
tion queries is crucial and can be expected to be a good indi-
cation of the performance of several other types of queries. To
avoid redundancy in the data structure, we excluded clipping
variants from our studies.

Our research has led to three articles:“Box-trees and R-trees
with near-optimal query time”[Aga02], “The Priority R-Tree:
a practically efficient and worst-case-optimal R-tree”[Arg04],
and: “Box-trees for collision checking in industrial installa-
tions” [Hav04BG]. All of them are, in the first place, about
static R-trees, that is: R-trees that are not updated anymore,
once built (although in [Arg04] we also discuss updates with
the logarithmic method).

In the first paper [Aga02] we prove that there are sets of rect-
angles, such that inanyR-tree on such a set, there are queries
that yield no answers but nevertheless visitΩ((n/t)1−1/d)
nodes. It is not so much this bound itself which is interest-
ing: it was already known from Kanth and Singh [Kan98] and
De Berg et al. [Brg00]. What is interesting is the type of data
that can bring out this worst-case behaviour. We show that such
worst-case sets of rectangles and queries exist even if any one
or two of the following restrictions apply:

• no point is contained in the bounding boxes of more than
a constant number of data rectangles (in other words: they
don’t overlap much);

• the aspect ratio of the query rectangles is bounded by a
constant (in other words: the query rectangles are not ex-
tremely long and thin);

• we have only two dimensions.

Only if all three of these restrictions apply, we cannot do our
lower bound construction. In fact, for that case we show how
to construct R-trees that can answer any axis-parallel rectangle
query by visitingO(log2 n + k) nodes.

Note that all our lower bounds, like the previous bounds by
Kanth and Singh [Kan98] and De Berget al.[Brg00], do not
hold for replicating data structures, that is, data structures that
may store each object (or a pointer to it) more than once.

In the same paper [Aga02] we also give an algorithm
for the construction of axis-aligned-bounding-box hierarchies
with nodes of degree two that achieves optimal query time
Θ(n1−1/d + k) in the general case. In a follow-up paper,“The
Priority R-Tree” [Arg04], we extend this method to get opti-
malΘ((n/t)1−1/d + k/t) query time on nodes of degreet (as-
suming that I/O-operations dominate). That paper describes the
method for nodes of degreet in detail; it is not necessary to read
the other paper first to understand it. In the follow-up paper we
also present experimental results in two dimensions. The results
indicate that our algorithm creates R-trees that are efficient in
practice, while being more robust than the heuristic approaches
known so far.

One may wonder if it is possible to construct R-trees that
combine the good properties of both constructions mentioned
above: getO((n/t)1−1/d + k/t) query in the general case, and
O(log2 n + k) query time if the three restrictions mentioned
above apply. In the first paper [Aga02] we describe a con-
struction, called kd-interval tree, that goes a long way towards
achieving this goal. A kd-interval tree in two dimensions an-
swers axis-parallel range queries in timeO(

√
n
t + k) and point

queries in timeO(log2 +k), provided that the data rectangles
don’t overlap much. As overlap among the data rectangles in-
creases, the point query performance degenerates gradually into
O(

√
n
t + k). One could use similar techniques as in our PR-

trees [Arg04] to get a better dependency on the degreet in the
k-term.

Our lower bound constructions [Aga02] show that it is not
possible to achieve something similar in more than two dimen-
sions: there are sets of disjoint data boxes that make any R-tree
that guarantees polylogarithmic query times for point queries,
spend near-linear time on some (hyper-)cube queries.

In another follow-up paper,“Box-trees for collision checking
in industrial installations” [Hav04BG], we look into the three-
dimensional situation further. The data boxes in the lower-
bound construction mentioned above do not look extremely
strange: they can be arbitrarily close to a unit cube in shape
and size. There is one peculiar thing about them though: they
must be arranged in such a way that certain cubic query ranges
yield no answers while there are alot of data boxes nearby.
It turns out that if we accept that such cases are difficult (but
probably rare in practice), and if we accept that certain arrange-
ments of extremely flat data boxes are difficult (but probably
rare in practice), we can build a three-dimensional kd-interval-
tree with polylogarithmic query time for the remaining cases
(the cases we expect to find in practice). We prove that these
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query times are achieved not only for queries with boxes but
also for queries with other query ranges of constant complex-
ity. In Box-trees for collision checking in industrial installa-
tions” [Hav04BG] we describe how to build a tree with nodes
of low degree; one may use the transformation algorithms de-
scribed in our first paper [Aga02] to transform the tree into a
real R-tree with high-degree nodes.

To distinguish between arrangements of boxes that should
be handled efficiently, and arrangements of boxes that may be
considered difficult, we define theslicing numberof a set of
data objects as follows: let the slicing numberλC with respect
to a cubeC be the maximum number of data object bounding
boxes that intersect four parallel edges ofC; then the overall
slicing numberλ is the maximum value ofλC over all possible
cubesC. A low slicing number means that the data boxes do
not overlap much and that there are no arrangements of lots of
extremely flat data boxes very close to each other.

The main results for point and axis-aligned rectangle queries
can be summarized in Figure 7, where we use the following
notation:

n: the total number of data objects in the hierarchy;

k: the number of data object bounding boxes that intersect
the query range;

kε: (with ε > 0) the number of data object bounding boxes
that intersect the query range, or lie within a distance ofε
times the diameter of the query range;

t: the maximum degree of the nodes in the hierarchy;

α: the maximum aspect ratio (width/height or height/width)
of the query range;

2.5 Subjects for further research

The 3-dimensional kd-interval-tree mentioned above has good
theoretical bounds for low-degree nodes, but when turned into
an R-tree (using the technique explained in [Aga02]), the de-
pendency on the degree of the nodes is not as good as one would
wish. We cannot yet say if data sets of realistic size and struc-
ture will nevertheless bring out the strength of the kd-interval-
tree, and if so, for what types of data and queries this method
would indeed be the method of choice.

In [Arg04] we compare our PR-tree to two variants of the
Hilbert-R-tree, which is an R-tree based on ordering objects
along the Hilbert space filling curve [Kam94]. Although the
Hilbert-R-tree cannot guarantee worst-case query times, and
does not outperform the PR-tree, it still has advantages: it is
built faster and it is much easier to implement and maintain.
We tested two variants of the Hilbert-R-tree in two dimensions:
one in which each data object is represented by its center point,
and one in which each data object is represented by afour-
dimensional point whose coordinates are those of the object’s

bounding rectangle. Naturally, the second variant is more ro-
bust when the data consists of rectangles. However, the exper-
iments also show that the second variant isweakeron some
sets ofpoint objects. It makes one wonder if this unwanted
behaviour cannot be avoided. Can we design a space-filling
curve, to be used as the basis for an R-tree, which is good for
both point and rectangle data?

The next big question that remains is: what is the best type
of bounding volume? It might depend on the type of queries
we want to perform. Are axis-aligned bounding boxes the best
choice for axis-aligned rectangle queries? What would be the
best bet for general range queries in two dimensions? Do the
results on octagons by Sitzmann and Stuckey [Sit99] suggest
that octagons, sometimes helpful, sometimes harmful, are just
a little bit too much? Would the optimum be found at discretely
oriented hexagons? And how would that be in three dimen-
sions? Dodecahedra?

Our research has been primarily aimed at two- and three-
dimensional settings. Our theoretical resultsarevalid for multi-
dimensional data as well. Unfortunately, this includes the rather
disappointing lower bounds. From this we must conclude that
the theoretical approach taken in this thesis, aiming for optimal
worst-case query times, may not give us a data structure that is
practical for high-dimensional data. In practice, one would like
to have a data structure that does not only guarantee optimal
query times on the worst possible data, but can also take advan-
tage of easier data to allow for faster queries. Since in many
practical situations, we do not have worst-case data, this would
lead to a data structure that is much faster in practice. We do not
know if our data structures take advantage of easy data or fail
to do so. For two-dimensional data, it worked out well—in our
experiments, the PR-tree does appear to be efficient—but this
success does not necessarily carry over to higher dimensions.
Handling high-dimensional data may require more study into
questions of the type: whatis easy data, and how can we de-
sign a data structure that simultaneously guarantees worst-case
query times and takes advantage of easy data? We have made
an attempt is an attempt to deal with the first question in three
dimensions [Hav04BG], but it is doubtful if it makes sense to
generalize that approach to higher dimensions. The right ques-
tions to ask may depend on the number of dimensions. Typical
applications for low-dimensional data include motion planning.
There we have objects that may have a shape in, for example,
four dimensions (three spatial dimensions and one time dimen-
sion). But high-dimensional data more often comes from ap-
plications where the data objects have no shape and size, but
are just points whose coordinates represent the values of non-
geometric properties of the objects.
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