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Abstract of points, or like a segment of the time line. How should | order
my CD's? By the oldest work on the CD, maybe? But then

This paper is an excerpt from Chapter 1 of my PhD the&gen the most recent work might be put in the very first place

[Hav04], written to introduce my publications about boundingn the shelf, if it just happens to be on the same CD as the old-

volume hierachies [Aga02, Arg04, HavO4BG]. est work. If | sort like this, how can | be sure of finding a work
from a certain era without checking all earlier CD’s too?

. When geometric objects have more than one dimension, the
1 Computational geometry and problem becomes even more difficult. But in many applica-

geometric data structures tions, a lot of questions about a set of geometric objects need
to be answered fast. For example, a flight simulator should not

ﬂﬂ%?d to scan the complete hard disk to determine if the plane

|%1going to hit a mountain in the next second. In such appli-

such objects are points, lines and polygons in the plane—wh?ﬁions’ itis essential t_hat geometri_c Obj?.CtS are stored i_n S.UCh
may represent a city plan—or balls, blocks and more comp% ay that .relevant (.)bJeCtS can be |dent|f|_ed quickly, while ir-
shapes in three dimensions—which may represent the inteé%?vam objects are ignored without checking them one by one.

Computational geometry is the area of algorithms research
deals with computations on geometric objects. Examples

of a power plant. In these cases, the geometric objects re en we can do this by sorting the objects into groups. If we do

sent physical objects in the real world. But this is not alwagiS in a clever way, we can, hopefully, discriminate quickly be-

the case. For example, a database storing the age and salar Fa" ghrOLE)PS vtvithT%oterfltiallyf_r e(lje_:vant O?jTCtS anql groufpsbv_vitht-
company’s employees can also be thought of as a database.othaT(uC ' objects. Theretore, finding useiul groupings ot objects
ey issue in many problems in computational geometry.

stores points in a two-dimensional space: each point represé%?s
an employee, with one coordinate indicating the age and thé\ set of geometric objects that is sorted, partitioned into
other coordinate indicating the salary of the employee. Thegioups and/or otherwise preprocessed, so that certain queries
fore, geometric computations are found in many applicatiodgout the set can be answered efficiently, is callgg@metric
of computers: databases, computer-aided design, geograp}ﬁi@ﬁ structure The goal of research into such data structures
information systems, flight simulators, other virtual reality af to make them as efficient as possible with respect to stor-
plications, robotics, computer vision and route planning are j@ge space, the time needed to build the data structure, the time
a few examples. needed to insert or delete objects, and the time needed to an-
To do efficient computations on geometric objects, it is criWer queries. Examples of such queries are: which objects lie
cial that we can store, search, and sometimes update, §a&tly) inside a given viewing window? Or: which object is
of geometric objects efficiently. When the objects are or@osest to a given query point? Of course, we would like our
dimensional points, this is relatively easy: we can sort thefata structure to facilitate fast answers, not for just one partic-
by their coordinate in that dimension, and put them in memd#ar query point or window, but foany query that might be
in that order. This makes it possible to find points fast. It is li@sked. One cannot usually expect to optimize for all of the ob-
|00king up words in a dictionary: thanks to the Ordering, V\}@Ctives mentioned at the same time. In general, the faster the
can find a word without turning all pages one by one. queries, the larger the demands on storage, preprocessing and
When an object cannot be described by a single point itgdate time.
one-dimensional space, it is less clear how to store a set dfVe do not usually measure the running times of data struc-
objects effectively. For example, | have a collection of musiare algorithms by counting milliseconds. We could, of course,
CD’s. | would like to order them by the year in which the mubut with computers getting faster all the time, this would make
sic was written, so that | can find all music from a particular ecaur results outdated even before they are published. Rather we
fast. My CD’s usually contain several works of music writteask the question: how well will a data structure be able to take
in a range of years. This makes it impossible to characterisadwvantage of bigger and faster computers? To answer that ques-
CD by a single point on a time line: a CD is rather like a groujon, we analyse in what way the number of basic operations
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performed by the central processor depends on the input size
(the number of objects stored) and the output size (the num
of objects retrieved). The first is usually denotedripyhe sec-

ond by k. We will write that algorithms have a running time B
of, for example,O(n) or O(n?). In the first case, the running
time is a linear function ofi. This means that if we can double[B
the speed of our hardware, this algorithm can process twice as

much data in the same time. In the second case, the runr : : :
’ 'ﬁ'ibﬂlre 1: Example of a bounding-volume hierarchy, using rect-
time is a cubic function of:, which means that our double- b g y g

. angles as bounding volumes.
speed computer will enable us to handle only 26% more datag ¢
with this algorithm. This means that even if the second algo-
rithm would be a little faster in practice on the current hardware L
. . . S o us the burden of maintaining several structures.
the first algorithm is probably more promising in the future. . . ) ]
If the amount of data is so big that we cannot keep all of jt !N Practice, so-callecoounding-volume hierarchiesften
in main memory while working on it, we count the number d?rowde a good S_OIUI'On' They are easy tq implement, and
disk accesses rather than the number of operations. In that &i&@ugh a bounding-volume hierarchy ferobjects does not

we analyse how the running times depend on three paramef&i¥'€ more tharkn pointers and geometric objects, it can be

the input sizes, the output sizé, and the amount of data transt/S€d for different types of queries. A query in a bounding-

ferred in one disk access. volume hierarchy does not go directly for the answer to the
In the most basic form, geometric data structures store poi%@ry; rather it generates a set of cand|dgte answers, wh|ch.then

and we want to be able to retrieve, for any query range ed to pe checked one by one. In practlcg, the set of car!d!date

points that are inside, or sometimes the points that are C|§g§wers is usually small enough to make this approach efficient.

est to that query range. This type of data structures has bFSFEa bounctl_lng-v?lumz_2|etrarchy o be usdef_l:I, : Sl}guldlalli)\;\rl]

well studied and structures have been developed for simpI%§< dggntera Ionhothc??hl ate all_rll(S\;vetrs,bar: It should select the

range queries, axis-parallel (hyper-)rectangular range queries, dates S_UC. a Pfy are likely to ? rue answers.

circular or (hyper-)spherical range queries, and point queriesBelow, I will first explain what a bounding-volume hierarchy

With O(n) space, one can build a data structurefopoints S and how itis used. After that, | will explain what issues have

in d dimensions that reports all points inside a simplex in tini@ be addressed when designing a bounding-volume hierarchy.

O(n'~14 4 k) [Mat93], wherek is the number of points re-1 will then focus on a particular class of bounding-volume hier-

ported. For queries with axis-parallel rectangles, one can @&ghies, namely R-trees, and give an overview of our results on

the same data Structure, or the much Simhtd}’treewith the R-trees. To C0nC|ude, I will Suggest a few SUbJeCtS for further

same query time (see e.g. [Brg97KOS] for a description). Witgsearch in this area.

more space, one can often get faster queries. For example, a

layered range treeanswers axis-parallel rectangle queries in

. d—1 : d—1 L.

timeO(log”™ " n+k), usingO(nlog®™ " n) space [Brg97KOS]. 2.1 Definition and usage

There are also other data structures whose query times depend

more heavily on the output size and less on the input size. 'i\%ounding-volume hierarchy is a tree structure on a set of geo-

more about data structures for points, see, for example, the §ilse opiects (the data objects). Each object is stored in a leaf

vey by Agarwal and Erickson [Aga98E]. of the tree. Each internal node stores for each of its chilgren
an additional geometric objett(v), that encloses all data ob-

) jects that are stored in descendants ofn other wordsV (v)
2 Data structures for object data: is a bounding volume for the descendants oFor an example,

bounding-volume hierarchies see Figure 1.

Bounding-volume hierarchies can be used to do many types
Designing efficient data structures becomes significantly m&fglueries on the set of data objects. For example, the algorithm
difficult if the objects stored are not points, but objects that hafeFigure 2 finds all objects that intersect a query ra@gend
some shape and size, such as line segments, balls or polyhédifastored in descendants of nadeTo find all data input ob-
Theoretically efficient solutions for such problems are often tiRfts that intersead, start the algorithm with the root of the hi-
complicated and bear too much overhead to be useful in pré@rchy as.. The query will then descend into the tree, visiting
tice. It becomes even more difficult if we want a data structuggactly those nodes whose bounding volumes inteigedthe
that supports multiple types of queries at the same time. diginding-volume hierarchy can also be used for other types of
can cheat, of course, by just taking a few data structures @9€ries, such as nearest-neighbour queries (see Figure 3).
gether and store each object multiple times: once in each strucFhe algorithms can easily be adapted to hierarchies with
ture. But this increases the storage requirements and also [@aees that store multiple data objects.
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Algorithm IntersectedQ,v)
1. for every childy of v
if V(u) intersects) then
if 1 is a leafthen { objectM stored iny is a candidate answér
if M intersectq) then
reportM
else

NooprwN

Intersected @, ).

Figure 2: Finding all objects that interseg@t To find all objects that li€completelyinside @, replace the intersection test in line
4 by a test ifM lies inside@. To find all objects that completelyontain @, replace the tests in line 2 and 4 by a tesDiis
completely contained i (1), or in M, respectively.

Algorithm Closest(Q,v)
1. smallestDistanceFoundSoFar co
2. P «— an empty priority queue

3. repeat
4 if v is a leafthen {the objectV stored inv is a candidate answeér
5 if distance betweefy and() < smallestDistanceFoundSoFtdren
6. smallestDistanceFoundSoFar distance betweefV and(@
7 closestObject— N
8. else
9. for every childy of v
11. inserty in P with priority (distance betweel (1) andQ)
12. v «+ the node with lowest priority itP; let p be its priority
13. remover from P

14. until p > smallestDistanceFoundSoFar P is empty
15. return closestObject

Figure 3: Finding the object closesttn

2.2 Designing bounding-volume hierarchies The minimum (best-fit) bounding box for a given set of data ob-

jects is easy to compute, needs only few bytes of storage, and

When designing a bounding-volume hierarchy, we have to g, st intersection tests are easy to implement and extremely
cide what kind of bounding volumes to use, what the struct e Experiments have been done with a number of other

of the hierarchy should look like, and how to order the dalg,pes though. Among them are the set-theoretic difference
objects in the tree. of two boxes [Ary00], oriented—that is: non-axis-aligned—
bounding boxes [Bar96, Got96], spheres [00s90] (with little
The shape of the bounding volumes. The choice of bound- success), the intersection of a box and a sphere [Kat97], the
ing volume is determined by a trade-off between two objectivédinkowski sum of a box and a sphere [Lar00], a circular sec-
On one hand, we would like to use bounding volumes that hdi@n of a spherical shell [Krs98], pie slices [Bar96], and dis-
a very simple shape. Thus, we need only few bytes to steretely oriented polytopes (k-DOP’s) [Jag90, Klo98], for exam-
them and intersection tests and distance computations are gi@-octagons [Sit99] or bounded aspect ratio k-DOP’s [Dun99].
ple and fast. On the other hand, we would like to have bound-Circles and spheres seem to leave too little freedom to adjust
ing volumes that fit the corresponding data objects very tightlie shape to fit the objects inside. But some of the more com-
Thus, we try to avoid going into subtrees that will not lead tglex shapes might actually work well. It is difficult to get a clear
any object that satisfies our query. On one extreme, we copicture from comparitive studies on this issue. Some authors
use the full space as the bounding volume for everything. @ho compared axis-aligned bounding boxes with discretely-
the other extreme, we would use the union of the data objestiznted octagons (in two dimensions) or oriented bounding
as their bounding volume. Both extremes are pointless. In thexes (in three dimensions) reported that in the end, axis-
first case we would traverse the complete tree for every quealigned bounding boxes often seem to work better, despite the
in the second case, intersection tests would be just as complad fit to the data; see Van den Bergen [Bgn99] and Sitzmann
as doing a complete query. and Stuckey [Sit99]. Sitzmann, however, also reported positive
In practice, the most commonly used bounding volume is egsults for octagon hierarchies on data consisting of randomly
axis-parallel (hyper-)rectangle—we will just call them boxesriented line segments. The right type of bounding volume
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might, in fact, depend on the input: some of the non-standard -
bounding volumes are specifically aimed at fitting the triangles

used to approximate smooth surfaces in virtual reality applica-

tions. Finding the right type of bounding volume definitively

remains as a subject for futher study. -
In our research, we decided to try to establish the best per-

formance that can be achieved with axis-aligned bounding-box

hierarchies, both from a theoretical and from a practical pofrigure 4: A set of rectangles for which an overlap-free hierar-
of view. chy of degree two is impossible.

The structure of the hierarchy. Since a bounding-volume@nd? is the minimum degree of the nodes.
hierarchy is a tree structure by definition, the main choice left is
to decide on the degree of the nodes, that is: the number of chifte distribution of the objects in the hierarchy. Finally, the
dren and/or input objects stored in a node. The optimal degvesy in which the objects are distributed in the hierarchy may
depends on the way in which the bounding-volume hierarchaive a huge impact on its performance. One of the major issues
is used. The cost of processing a node in the hierarchy is casnthat overlap between bounding volumes in the same node
posed of the costs of accessing the location of the node in mesm make search paths branch and spread out into large parts of
ory, the cost of reading the node’s children pointers and thiie hierarchy. Therefore, it is important to keep the amount of
bounding volumes, and the cost of the intersection or distameerlap small. Unfortunately, overlap cannot be avoided com-
computations on those bounding volumes. If the hierarchypigtely. Points can always be distributed among the different
stored on disk, the access cost tends to be high: the disk’s heads of the hierarchy in such a way that the bounding boxes in
must be moved to the correct physical location. Once the diskode do not overlap, but with other objects this is not always
head is at the correct position, a complete block of data is reaubsible. Figure 4 shows a set of rectangles that does not admit
into main memory at once. Computations on those data are oflan overlap-free hierarchy of bounding rectangles (or other
atively cheap, since these are done in main memory. Therefemnvex bounding volumes) with nodes of degree two. The only
high-degree nodes that fill a full block of data are preferred. @y to avoid overlap is to cut data objects into smaller parts
the other hand, if the hierarchy is stored in main memory, ofetipping), but this comes at a cost: it would take more storage
main concern is to keep the number of intersection or distarsgece, and while collecting the answers to a query, time may
computations down. For queries that do not yield too many d® wasted retrieving pointers to objects which we had found
swers, this is best achieved by making many low-degree noddgeady through another part.
For example, two nodes that are irrelevant to our query can ofMoreover, minimizing the amount of overlap does not nec-
ten be skipped faster if we construct a parent node that gedsarily lead to optimal query efficiency, as is illustrated by
these two nodes as its children. A single distance computatiba following example. In Figure 5, we divided the line seg-
on the parent’s bounding volume may then reveal that we aaents into groups of four: each group corresponds to a node
skip its two children without doing distance computations gust above leaf level in a hierarchy with nodes of degree four.
them. Of course, this potential advantage of having many loks-the top figure, we did the grouping so that we minimize the
degree nodes only materializes if usually, the parent node wikerlap between the bounding boxes of the nodes. A query with
indeed be skipped if both of its children are, and usually, we the grey square will visit 8 nodes on this level. In the lower fig-
not need to go into both children after all. Whether or not thisuse, the line segments are grouped in another way. A query with
actually the case depends on the data, the queries, and thetivagrey square will now visit only 4 nodes on this level.
in which the data objects are distributed in the tree. If minimizing overlap is not enough to guarantee optimal
Another issue with regard to the structure of the hierarchyeries, then how should we distribute or group the objects in
is its height. If we want to be able to go from the root to arthe hierarchy? It is this issue that was the main subject of my
data object fast, small height is a necessary condition, but n&h research.
sufficient one. The main problem is that the bounding volumes
of a node’s children may intersect. If the object lies inside th 'f3 R-Trees
intersection, there is no way to tell which child has the object
as a descendant. However, small height may still be usefuMie restricted our study to hierarchies that use axis-parallel
guarantee that update algorithms can run fast. Most algorithmeges as bounding volumes. Extending the study to other types
to insert or delete an object run in tind® k), whereh is the of bounding volumes is an obvious subject for further research
height of the tree. Small height is most easily guaranteed iyt it lies beyond the scope of our work. Bounding-volume hi-
requiring that all leaves are at the same depth. This a suffiarchies that use axis-parallel boxes as bounding volumes and
cient, but not a necessary condition, to guarantee that the tragee nodes of high degree are also known as R-trees. The R-
has heighO(log, n), wheren is the number of objects storediree was originally introduced by Guttman [Gut84]. His study
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ment (the tree is built once and not changed afterwards), and
a dynamic environment (the tree is continuously updated). In
a dynamic environment it may be very difficult to maintain an
“ideal” distribution of objects over the tree. The insertion of
an object can, in principle, change the ideal distribution a lot.
To allow for reasonably efficient update operations, one has to
relax the ideal a bit. As a result, static trees, built with a par-
titioning or a linear-ordering algorithm, usually allow for more
efficient queries than their dynamic counterparts or insertion-
based algorithms.

Despite the huge body of research on R-trees, until recently,
Figure 5: Minimizing overlap does not always lead to optimgéry little was known about the query times that can be guaran-
query efficiency. teed for worst-case data and queries. From Kanth and Singh
[Kan98] and De Berg et al. [Brg00] some lower bounds for

has inspired two decades of research about how to distribute'ﬂ%%rsecuon queries with axis-paralel rectangles were known:

; 1-1/d ;
data objects in an R-tree, some authors designing new diHerY times better thaf((n/t) + k/t) can, in general,

bution algorithms from scratch, others suggesting optimizatimr)]t be guaranteed. Heras the number of data objectsis the

heuristics to be used in conjunction with known methods. . egree of the nodes, is the number of object bounding boxes

. : {Htersected, and is the number of dimensions. There were
R-trees are parametrized by the maximum degree of the X
no algorithms to construct R-trees that can guarantee to do any

n n in thi r. Thi rameter i .
odes, denoted by. .t s pape S para Iete S set touery faster than a full traversal of the complete hierarchy, even
match the characteristics of the hardware used: usually the \ Efﬁere are no answers to be reported. The only results in that

is stored on disk, andis chosen such that a node fills a full,.” ™.
block on the disk. For in-memory applications, smaller valydirection were by De Berg et al. [Brg00], but they could guar-

of ¢ would be used. The minimum degree of the nodes is ggttee fast queries only for relatively small query ranges. Other

to a fixed fraction of; in the R-tree variants studied it range{ie search on R-trees was mainly experimental, or of a statistical

from 10% to 50% of. R-trees usually store data objects in thréature, making statements about expected query times under

: certain assumptions on the distribution of the data and/or the
leaves only and have all leaves on the same level in the tréé

although some authors have designed variants where this iscﬁjc?t:.'es' To our knowledge, our algorithms [Aga02, Arg04] are
the first algorithms that construct R-trees that guarantee worst-

the case (e.g. [Agg97, Kan97, Ros01]). ) ;
Essentially three types of algorithms have been designe(f g€ query times better thékin) for all axis-parallel rectangle

I . ) i ) range queries.
distribute the objects in an R-tree: Note that in the bound mentioned above, as well as in all

by repeated insertion: One defines an insertion algorithm thatesults mentioned below is not the number of objects in-
strives to optimize the tree locally; a complete tree is buirsected, but the number of data objectinding boxe#ter-
by inserting the data objects one by one, e.g. [Ang9&cted. Ik would be the number of data objects intersected, it
Bkr92, Bmn90, Grc98b, Ros01]. Usually, deletion algavould be very difficult to prove anything about the efficiency of
rithms are provided as well. R-trees. Even if the objects are disjoint, their bounding boxes
) o ) ) ~ may in the worst case intersect in a single point, leading to a
by recursive partitioning: One de_flnes an algorithm to d's'query time ofQ2(n/t). For an example, see Figure 6. In three
tribute any number of data objects among up $abirees; gimensions, there are sets of line segments sucrathghier-
the tree is built by applying the partitioning algc_)rithm '€archy ofconvexbounding volumes on such a set, negds /¢)
cursively top-down, e.g. [Agg97, Grc98a, Whi96]. Théme to answer a query with an axis-parallel line in the worst
resulting data structure can be maintained either by usiigse [Bar96]. However, even if the objects intersected cannot
insertion and deletion heuristics as above (and, for exagg identified efficiently in the worst case, this is no reason to
ple, rebalancing the complete tree during quiet hours), Qe up on at least identifying the objempunding boxeinter-
by using the logarithmic method [Aga01APV]. sected efficiently. From now on, we will assume that the data

by linear ordering: One defines a function that maps ea&pjects stored in our hierarchies are in fact bounding boxes, and
data object tc') a one-dimensional value: the tree can tr{%Wi” be the number of such bounding boxes intersected by the
be built and maintained as a standard B-tree that uses4H&"Y "ange.
function values as keys [Brg00, Bhm99, Kam93, Kam94].

. 2.4 Our results
For an extensive survey on R-trees, see Manolopoulos et

al. [Man03]. Given the fact that we use axis-parallel boxes as bounding vol-
When comparing the query efficiency of R-trees built by sucimes and given the maximum degree of the nodes, we set out
algorithms, one should distinguish between a static enviraa-optimize the structure of the tree for fast intersection queries.
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Only if all three of these restrictions apply, we cannot do our

lower bound construction. In fact, for that case we show how
b to construct R-trees that can answer any axis-parallel rectangle
query by visitingO(log® n + k) nodes.

Note that all our lower bounds, like the previous bounds by
Kanth and Singh [Kan98] and De Begg al[Brg00], do not
hold for replicating data structures, that is, data structures that
may store each object (or a pointer to it) more than once.

o In the same paper [Aga02] we also give an algorithm
for the construction of axis-aligned-bounding-box hierarchies
Figure 6: All bounding boxes of these line segments overlap¥ifith nodes of degree two that achieves optimal query time

a single point. A query with that point needs to examine t¥(n'~'/ + k) in the general case. In a follow-up pap&ihe
complete hierarchy. Priority R-Tree” [Arg04], we extend this method to get opti-

mal©((n/t)' =1/ + k/t) query time on nodes of degreéas-

suming that I/0-operations dominate). That paper describes the
We chose to optimize for intersection queries since such querigsthod for nodes of degreén detail; it is not necessary to read
are an important application to start with, and they are indiafe other paper first to understand it. In the follow-up paper we
tive of the efficiency of some other types of queries as wedlso present experimental results in two dimensions. The results
For example, queries for objects intersecting a rectangle amdicate that our algorithm creates R-trees that are efficient in
queries for objects contained in a rectangle visit exactly tpeactice, while being more robust than the heuristic approaches
same nodes, and nearest-neighbour queries with a point \Wsitwn so far.
exactly those nodes which would be visited by a intersectionone may wonder if it is possible to construct R-trees that
query with a circle centered on that point and just touching thembine the good properties of both constructions mentioned
nearest neighbour. Therefore, a good performance on intergggye: geO((n/t)' =14 + k/t) query in the general case, and
tion queries is crucial and can be expected to be a good indi10g% n, + k) query time if the three restrictions mentioned
cation of the performance of several other types of queries. gigbye apply. In the first paper [Aga02] we describe a con-
avoid redundancy in the data structure, we excluded clippiggyction, called kd-interval tree, that goes a long way towards
variants from our studies. achieving this goal. A kd-interval tree in two dimensions an-

Our research has led to three articlox-trees and R-trees swers axis-parallel range queries in time\/?_i_ k) and point

with near-optimal query time{Aga02], “The Priority R,-Tree: queries in timeO(log” 4+k), provided that the data rectangles
a practically efficient and worst-case-optimal R-rd&rg04], jon't overlap much. As overlap among the data rectangles in-

a_md: "“Box-trees for collision checkin_g in inc_iustrial i”Sta”a'creases, the point query performance degenerates gradually into
tions” [Hav04BG]. All of them are, in the first place, aboul) /= + k). One could use similar techniques as in our PR-

static R-trees, that is: R-trees that are not updated anymgre. t[ArgO4] to get a better dependency on the deghe¢he
once built (although in [Arg04] we also discuss updates with

the logarithmic method).
In the first paper [Aga02] we prove that there are sets of re

WA\
WRRR\N
WRRR\N

Our lower bound constructions [Aga02] show that it is not
| h that | R-t h t th . Bssible to achieve something similar in more than two dimen-
angies, such that 1any R-ree on such a set, there are querlag, o iare are sets of disjoint data boxes that make any R-tree

that yield no answers but nevertheless viQit(n/t)!~1/4) h e . ) .
. . ) A ran Iyl rithmi ry times for poin ries,
nodes. It is not so much this bound itself which is mteres;t at guarantees polylogarithmic query times for point queries

ing: it was already known from Kanth and Singh [Kan98] ancPend nesr-h:elzlar time on some (hyperf—)cublelz- querlis. K
De Berg et al. [Brg00]. What is interesting is the type of dataIn another follow-up papetBox-trees for collision checking

that can bring out this worst-case behaviour. We show that Suwwdustnal installations”[Hav04BG], we look into the three-

worst-case sets of rectangles and queries exist even if any gm%ensmnal 3|tu_at|on furt_her. The data boxes in the lower-
or two of the following restrictions apply: bound construction mentioned above do not look extremely

strange: they can be arbitrarily close to a unit cube in shape

e no point is contained in the bounding boxes of more th&Rd size. There is one peculiar thing about them though: they

a constant number of data rectangles (in other words: tHBYst be arranged in such a way that certain cubic query ranges
don’t overlap much); yield no answers while there arelat of data boxes nearby.

It turns out that if we accept that such cases are difficult (but
e the aspect ratio of the query rectangles is bounded byr@bably rare in practice), and if we accept that certain arrange-
constant (in other words: the query rectangles are not &ents of extremely flat data boxes are difficult (but probably

tremely long and thin); rare in practice), we can build a three-dimensional kd-interval-
tree with polylogarithmic query time for the remaining cases
e we have only two dimensions. (the cases we expect to find in practice). We prove that these
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query times are achieved not only for queries with boxes thdunding rectangle. Naturally, the second variant is more ro-
also for queries with other query ranges of constant compléwst when the data consists of rectangles. However, the exper-
ity. In Box-trees for collision checking in industrial installaiments also show that the second variantvisakeron some
tions” [Hav04BG] we describe how to build a tree with nodesets ofpoint objects. It makes one wonder if this unwanted
of low degree; one may use the transformation algorithms dehaviour cannot be avoided. Can we design a space-filling
scribed in our first paper [Aga02] to transform the tree intocairve, to be used as the basis for an R-tree, which is good for
real R-tree with high-degree nodes. both point and rectangle data?

To distinguish between arrangements of boxes that should’he next big question that remains is: what is the best type
be handled efficiently, and arrangements of boxes that mayobdounding volume? It might depend on the type of queries
considered difficult, we define thaicing numberof a set of we want to perform. Are axis-aligned bounding boxes the best
data objects as follows: let the slicing numbey with respect choice for axis-aligned rectangle queries? What would be the
to a cubeC be the maximum number of data object boundirtgest bet for general range queries in two dimensions? Do the
boxes that intersect four parallel edges(afthen the overall results on octagons by Sitzmann and Stuckey [Sit99] suggest
slicing numben\ is the maximum value ok over all possible that octagons, sometimes helpful, sometimes harmful, are just
cubesC. A low slicing number means that the data boxes ddlittle bit too much? Would the optimum be found at discretely
not overlap much and that there are no arrangements of lot®idénted hexagons? And how would that be in three dimen-
extremely flat data boxes very close to each other. sions? Dodecahedra?

The main results for point and axis-aligned rectangle querieQur research has been primarily aimed at two- and three-
can be summarized in Figure 7, where we use the followid@inensional settings. Our theoretical resaltsvalid for multi-
notation: dimensional data as well. Unfortunately, this includes the rather
disappointing lower bounds. From this we must conclude that
the theoretical approach taken in this thesis, aiming for optimal

k: the number of data object bounding boxes that inters¥(@rst-case query times, may not give us a data structure that is
the query range; practical for high-dimensional data. In practice, one would like
to have a data structure that does not only guarantee optimal
k.. (with e > 0) the number of data object bounding boxeguery times on the worst possible data, but can also take advan-
that intersect the query range, or lie within a distance otage of easier data to allow for faster queries. Since in many
times the diameter of the query range; practical situations, we do not have worst-case data, this would
lead to a data structure that is much faster in practice. We do not
know if our data structures take advantage of easy data or fail
«: the maximum aspect ratio (width/height or height/widti§ do so. For two-dimensional data, it worked out well—in our
of the query range; experiments, the PR-tree does appear to be efficient—but this
success does not necessarily carry over to higher dimensions.
Handling high-dimensional data may require more study into
guestions of the type: whad easy data, and how can we de-
2.5 Subjects for further research sign a (_jata structure that simultaneously guarantees worst-case
guery times and takes advantage of easy data? We have made
The 3-dimensional kd-interval-tree mentioned above has gagdattempt is an attempt to deal with the first question in three
theoretical bounds for low-degree nodes, but when turned idimensions [Hav04BG], but it is doubtful if it makes sense to
an R-tree (using the technique explained in [Aga02]), the dgeneralize that approach to higher dimensions. The right ques-
pendency on the degree of the nodes is not as good as one wioitd to ask may depend on the number of dimensions. Typical
wish. We cannot yet say if data sets of realistic size and stragplications for low-dimensional data include motion planning.
ture will nevertheless bring out the strength of the kd-intervathere we have objects that may have a shape in, for example,
tree, and if so, for what types of data and queries this mettfodr dimensions (three spatial dimensions and one time dimen-
would indeed be the method of choice. sion). But high-dimensional data more often comes from ap-

In [Arg04] we compare our PR-tree to two variants of thelications where the data objects have no shape and size, but
Hilbert-R-tree, which is an R-tree based on ordering objeeis just points whose coordinates represent the values of non-
along the Hilbert space filling curve [Kam94]. Although thgeometric properties of the objects.

Hilbert-R-tree cannot guarantee worst-case query times, and

does not outperform the PR-tree, it still has advantages: it is

built faster and it is much easier to implement and maintaiReferences
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n: the total number of data objects in the hierarchy;

t: the maximum degree of the nodes in the hierarchy;
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Figure 7: Summary of our results.
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