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There are many plane-filling curves—see, for example, Ventrella’s book [1]. One may sample such a
curve at regular intervals, that is, such that the same amount of area is filled between any pair of
consecutive sample points, and then connect the sample points to obtain a sketch of the curve. Most
published plane-filling curves can be sampled in such a way, that the resulting sketch follows the edges
of a regular triangular or square grid, even if the curve fills a complicated fractal shape in the end. Most
published plane-filling curves that cannot be sketched in this way fill simple shapes such as triangles
or quadrilaterals. I only know of a few published plane-filling curves that are not sketched on a regular
square or triangular grid and do fill fractal shapes:
• plane-filling curves that fill the Rauzy triangle fractal [2], or a part of it;
• plane-filling curves that fill the BMTV triangle fractal [3], or a part of it;
• and since very recently, Nico Bakker’s duck curve and Titanic curves [4].

Bakker’s duck curve is so called because one natural way of sketching it results in a wonderful tessellation
of duck-shaped tiles of different sizes that fit perfectly together—for details, see Bakker’s manuscript [4].
Below, however, we will not discuss the ducks, but focus on understanding the plane-filling character of
the curve.

Definition of the duck curve

Consider a grid G0, not of triangles or squares, but of parallelograms with side length ratio
√

2 and
acute angles arccos( 1

4

√
2) = arctan(

√
7), see Figure 1(a). These parallelograms have short diagonals as

long as their longest sides, and long diagonals that are exactly
√

2 as long (and thus, twice as long as
their shortest sides). To obtain a refined grid G1, we replace each long edge in the grid by a sequence of
three edges as illustrated in Figure 1(b). This results in a grid of parallelograms of the same shape as
before, but rotated and scaled down by a factor

√
2, see Figure 1(c). Each short edge in the original grid

becomes a long edge in the refined grid. Note that in the resulting grid, all edges can be traced back to a
unique edge in the original grid, as indicated by the colours in Figure 1(c). If we repeat this refinement
procedure ad infinitum, we obtain grids G2, G3, ....

When we start with an edge of G0, we thus obtain sequences of edges σ0, σ1, σ2, ..., where σ0 is
a single edge of G0. For each i > 0, the sequence σi consists of edges of Gi and is obtained from σi−1
by substituting, for each edge of σi−1, its replacement of one or three edges in Gi. We execute these
substitutions such that the three edges that replace an edge are inserted and directed such, that they
form a chain that has the same starting point and the same end point as the edge that is replaced by it.
Thus, each σi constitutes a continuous path.

As i tends to ∞, the sequence σi ultimately converges to a copy of some fractal curve, see Fig-
ure 1(f). This is the duck curve. A duck curve can be more precisely described as a function f from
[0, 1] to points in the plane, as follows. Let e0 be an edge in grid G0 from the point (0, 0) to the point
(1, 0); we will define f for the duck curve with these endpoints. When e is refined, it is replaced by three
edges α(e0), β(e0) and γ(e0), where α, β and γ are similarity transformations R2 → R2 that shrink,
rotate and translate the plane. Note that α has (0, 0) as its fixed point, while γ has (1, 0) as its fixed
point. Each of the edges α(e0), β(e0) and γ(e0) induces a smaller duck curve between its endpoints. To
obtain a measure-preserving plane-filling curve, the duck curves between the endpoints of α(e0), β(e0)
and γ(e0) must cover the first quarter, the middle half, and the last quarter of the parameter range [0, 1],
respectively. The point f(t) at position t ∈ [0, 1] along the duck curve between the end points of e0 must
therefore satisfy:

f(t) = α (f (4 t )) if t ∈ [0 , 1/4]
β (f (2(t− 1/4))) if t ∈ [1/4, 3/4]
γ (f (4(t− 3/4))) if t ∈ [3/4, 1 ]
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Figure 1: (a) Grid of parallelograms. (b) Replacing one edge of the grid. (c-e) The refined grids G1, G2, G3.
(f) A sketch of σi for high i.

Note that if t ∈ {1/4, 3/4}, two lines of this definition apply. We will now argue that the function f is
well-defined and continuous and is thus a curve, and moreover, that it is a plane-filling curve.

Proof that the duck curve fills the plane

Bounding shape The first thing we need for our proof, is a coarse bounding shape for the image of the
function f , that is, the part of the plane that is filled by the duck curve between the end points of e0.
From the above definition of f we learn that the image I of f must satisfy:

I = α(I) ∪ β(I) ∪ γ(I).

Thus, I is the so-called attractor of an iterated function system that consists of the contractive maps α,
β and γ. Under these conditions it can be proven1 that I is contained in any compact set R such that
R ⊇ α(R)∪ β(R)∪ γ(R). For this purpose we will take the closed ellipse R whose whose focal points are
the end points of the duck curve and whose major axis is as long as

√
2 times the distance between the

focal points, see Figure 2(a). We will call this ellipse the range of e0. The range of a smaller edge λ(e0),
that is obtained by applying a similarity transformation λ to e0, is now λ(R).

Function values Now we can have a look at the value of f(t). First suppose t = 0. Then the recursive
definition of f(t) given above gives us f(0) = α(f(0)). Since the only fixed point of α is (0, 0), this implies
f(0) = (0, 0). By a similar analysis, we find f(1) = (1, 0), and thus, f(1/4) = α(f(1)) = β(f(0)) is the
point where α(e0) meets β(e0), and f(3/4) = β(f(1)) = γ(f(0)) is the point where β(e0) meets γ(e0).
Now suppose we start with some value t ∈ (0, 1) and expand the recursion, obtaining a sequence of the
form:

f(t) = λ1(f(t1)) = λ2(f(t2)) = ...,

where each λi is a composition of similarity transformations from α, β and γ, and λi(e0) is an edge of
Gi. Two things can happen: either we find that f(t) = λi(f(ti)) for some i while ti ∈ {1/4, 3/4}, or this
never happens, no matter how far we expand the recursion. In the first case, the value of λi(f(ti)) is
well-defined, as we have seen above. In the second case, in every step of the recursion, the expansion of
the recursion is unambiguous: each edge λi(e0) is either λi−1(α(e0)), λi−1(β(e0)), or λi−1(γ(e0)), and
thus has a range that lies inside that of λi−1(e0) and whose diameter is smaller by at least a factor

√
2.

Thus, the ranges of e0, λ1(e0), λ2(e0), ... converge to a point, and this point is f(t).

Continuity A function f is continuous on [0, 1] if limt′↑t f(t′) = f(t) for t ∈ (0, 1], and limt′↓t f(t′) = f(t)
for t ∈ [0, 1). If, in the expansion of the recursion for f(t), we never get ti ∈ {1/4, 3/4}, the conditions

1. See, for example, Rice [5]: the proof for ball that is given there also works for arbitrary compact sets R.
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Figure 2: (a) Bounding ellipse of the duck curve. The bounding ellipse of e0 is the set of points x
such that the distance ||A − x|| + ||x − D|| from A via x to D is at most

√
2. The bounding ellipse

of α(e0) is the set of points x such that ||A − x|| + ||x − B|| is at most 1
2

√
2. In the latter case, we

have, by the triangle equality, ||A − x|| + ||x − D|| ≤ ||A − x|| + ||x − B|| + ||B − D|| and, therefore,
||A− x||+ ||x−D|| ≤ (||A− x||+ ||x−B||) + ||B −D|| ≤ 1

2

√
2 + 1

2

√
2 =
√

2. Thus, any point x in the
range of α(e0) also lies in the range of e0. (b) Bounding ellipses of edges of a grid. Each region’s shade
indicates the number of ellipses that covers the region, from 1 to 4. Each corner of a grid cell lies only
in the bounding ellipses for the four edges that meet in that corner. Each grid cell is only intersected by
the twelve different ellipses that contain one or two of its corners.

P

e0
e0

Figure 3: The edges of the fifth-level expansion σ5 in G5 of a single edge σ0 = {e0} in G0.

for continuity are obviously fulfilled: as t′ gets closer to t, the expansions of the recursions for t and t′

will share an ever larger initial sequence of edges e0, λ1(e0), λ2(e0), ... and corresponding nested bounding
ellipses, and thus, f(t′) will converge to f(t). If, at some point, we have ti = 1/4, then, to verify continuity,
we have to expand the recursion for λi(f(ti)) with λi+1 = λi ◦α and ti+1 = 1 to verify the first condition,
whereas we expand the recursion with λi+1 = λi ◦ β and ti+1 = 0 to verify the second condition; from
there, we can complete the argument as before. The case of ti = 3/4 can be handled in a similar manner.
Thus, f is continuous.

Filling the plane To confirm that the duck curve is a plane-filling curve, all that remains to verify, is
that its image I in the plane has non-zero Jordan measure, that is, the duck curve contains at least some
points that are not on the boundary of I. This can be confirmed as follows—the proof technique used is
essentially an adaptation of Lévy’s proof for Cesaro’s curve [6] (pages 271–279).

It is easy to verify that the fifth level of refinement of the duck curve between the endpoints of
e0 contains all twelve edges incident on a particular grid cell P in G5 (In fact, there are four such
grid cells—see Figure 3). Now consider any point p in the interior of P . For any i ≥ 5, let Pi be the
cell (parallelogram) of Gi that contains p, where P5 = P , and let Ei be the edges of Gi whose ranges
contain p. Note (see Figure 2(b)) that Ei consists of at least one and at most four of the twelve edges
that have at least one vertex on the boundary of Pi.
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Figure 4: Definitions and colour trail visualisations of four plane-filling curves that are related to the
duck curve.

We say an edge e of Gi is a descendant of an edge e′ of Gj if e appears in the recursive expansion
of e′, that is, either e = e′, or e is a descendant of one of the edges that replace e′ in Gj+1. An edge
e′ of Gj is the level-j-ancestor of an edge e in grid Gi if e is a descendant of e′. For any j ∈ {5, ..., i},
the level-j ancestors of the edges of Ei are all among the edges of Ej , since by definition, the ranges of
the edges of Ei contain p, and since ancestors’ ranges contain their descendants’ ranges, they must then
also contain p. It follows that for each edge e of Ei, the duck curve between the endpoints of e is part
of the duck curve between the endpoints of e0, since that duck curve contains the level-5 ancestors of all
edges in Ei. Now let the inverse f−1(e) of an edge e of Ei be the interval such that f(f−1(e)) is the duck
curve between the endpoints of e. Observe that as i tends to infinity, the edges of Ei converge to p, and
simultaneously

⋃
e∈Ei

f−1(e) remains non-empty and converges to a set of at most four points in [0, 1].

Thus, the points of limi→∞
⋃

e∈Ei
f−1(e) are the values t such that f(t) = p, that is, these are the places

where we find p on the duck curve between the endpoints of e0.
Note that convergence of the t-values can take various forms and the pre-image of p is not necessarily

a single point. As it is the limit of convergence of the union of four intervals, it is possible that the pre-
image of p consists of four points, meaning that p is visited by the curve four times2. It is also possible that
the pre-image of p is a single point, namely if out of the four intervals for any given level i, three intervals
will eventually disappear from the converging set of t-values entirely and be replaced by subintervals of
the fourth interval. But in any case, the pre-image of p lies in a converging set of four intervals, so it
consists of up to four points (t-values).

Since the above reasoning works for any point p in the interior of P , it follows that all points in
the interior of P are part of the curve’s image I. Moreover, they are not on the boundary of I, because
for any such p, there is a distance δ such that all points within distance δ from p are also in the interior
of P , and therefore also in I. This proves that the duck curve between the endpoints of e0 fills a part of
the plane with non-zero Jordan measure, and thus it is a plane-filling curve.

Related plane-filling curves

I found four plane-filling curves that are closely related to the duck curve and can be defined on the
basis of the same grid—see the definitions in Figure 4. The first three of these are not too surprising:

2. I am not saying that duck curve actually contains points that are visited four times; I am only saying that my proof
technique does not rule this out. At first sight, it seems that the duck curve does not actually visit any point more than
three times.
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they are essentially a part of the duck curve, and thus, they consist of duck curves. To be precise, when
the function f from the unit interval [0, 1] to a subset of the plane is a curve, let f [a, b] be the curve
restricted to the pre-image [a, b] and reparameterised to [0, 1], that is, f [a, b](t) = f(a+ (b− a)t). When
two curves f and g are the same under scaling, rotation and/or translation, we will write f ≡ g. Now let
d be the duck curve, and let d1, d2 and d3 be the first three variants from Figure 4. Now we can identify
largest variant curves inside the duck curve and vice versa as follows:

d1 ≡ d[0, 34 ] d ≡ d1[ 13 , 1]

d2 ≡ d[0, 12 ] d ≡ d2[0, 12 ]

d3 ≡ d[ 18 ,
4
8 ] d ≡ d3[ 13 ,

2
3 ]

Thus we find duck curves as the last two thirds of d1, the first half of d2, or the middle third of d3.
The fourth variant (“twisted duck”) however, is different. It fills a shape that appears to be half of

the shape filled by the duck curve, and it consists of parts (such as the middle two quarters) that appear
to fill the same shape as the duck curve—but it fills these shapes in a different way! Figure 5 illustrates
the difference, showing the duck curve on the left, and the middle two quarters of the twisted duck curve
(scaled and rotated to match) on the right.

Bakker also presents a generalisation of the duck curve’s construction, which he calls Titanic curves.
These are plane-filling curves in 4k − 1 parts of two different sizes on a grid of parallelograms with side
length ratio

√
2k, for any positive natural number k.
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Figure 5: Colour gradient visualisations (from brown via yellow, red and blue to green) and ascending-
path visualisations [7] of the duck curve (left) that results from the generator of Figure 1(b), and of the
middle two quarters of the twisted duck curve (right) that results from the generator in Figure 4 (d4).
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