
Simple I/O-efficient flow accumulation on grid terrains

Herman Haverkort
TU Eindhoven

Jeffrey Janssen
Realworld Systems

Drainage network analysis

grid elevation model

Drainage network analysis

grid elevation model each cell has non-ascending
path to boundary

flooding

Drainage network analysis

flooding

flow routing

each cell has a flow direction;
following flow directions leads
to boundary

Drainage network analysis

1 2–5 6–12 13–50

flooding

flow routing

flow accumulation

compute for each cell c, from how many cells water passes through c

1 2–5 6–12 13–50

1 2

4
6

8

9

7
35

Drainage network analysis

flow routingwatershed labelling

flow accumulation

Analysing I/O-efficiency

main memory
of size M

external memory
(disk)

of infinite size

1 “I/O” transfers

block of size B
CPU

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and grid size N
(sometimes assume M ≥ c ·B2)

memoryCPU cachecache disk

block transfers (I/O’s)

Analysing I/O-efficiency

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and grid size N
(sometimes assume M ≥ c ·B2)

memory
size M

CPU

size B

Analysing I/O-efficiency

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and grid size N
(sometimes assume M ≥ c ·B2)

CPU
cache

size B

size M

Analysing I/O-efficiency

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and grid size N
(sometimes assume M ≥ c ·B2)

CPU cache

size B

size M

Analysing I/O-efficiency

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and grid size N
(sometimes assume M ≥ c ·B2)

CPU cache

size B

size M

Analysing I/O-efficiency

cache-aware algorithms: know M and B, control caching
cache-oblivious algorithms: do not know M and B, caching left to system

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and grid size N
(sometimes assume M ≥ c ·B2)

CPU cache

size B

size M

Analysing I/O-efficiency

cache-aware algorithms: know M and B, control caching
cache-oblivious algorithms: do not know M and B, caching left to system

CPU only operates on data in main memory (for free)

scanning N cells takes Θ(scan(N)) = Θ(N/B) I/O’s
sorting N cells takes Θ(sort(N)) = Θ(N

B
logM/B

N
B

) I/O’s

Time-forward processing (Arge et al.)

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Time-forward processing (Arge et al.)

input

output

pqueue

sort

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Time-forward processing (Arge et al.)

input

output

pqueue

1

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Time-forward processing (Arge et al.)

input

output

pqueue

1 1

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Time-forward processing (Arge et al.)

input

output

pqueue

1 1

1

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Time-forward processing (Arge et al.)

input

output

pqueue

1 1

1

1 11 1 1 1 1 1 1

1 111 11 1
1

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Time-forward processing (Arge et al.)

input

output

pqueue

1 1

1

1 11 1 1 1 1 1 1

1 111 11 1
1

1

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Time-forward processing (Arge et al.)

input

output

pqueue

1 1

1

1 11 1 1 1 1 1 1

1 111 11 1
1

2

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Time-forward processing (Arge et al.)

input

output

pqueue

1 1

1

1 11 1 1 1 1 1 1

1 11 11 1
1

2

2

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Time-forward processing (Arge et al.)

input

output

pqueue

1 1 1 11 1 1 1 1 1 1 2 2 7 10 14

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Time-forward processing (Arge et al.)

output

1 1 1 11 1 1 1 1 1 1 2 2 7 10 14

1

1

1

1

1

1

1

1

1

1

2

7

10

141

1

sort

Goal: compute flow
accumulation for each
cell c
= #cells from which
water passes through c
= size of tree rooted at c

Time-forward processing (Arge et al.)

Time-forward processing

Worst-case I/O’s: Θ(sort(N)) (Arge et al.)

I/O-volume per grid cell (optimistic):
Sorting grid into list of 2× 2× 24 = 96 bytes
(xy-location, topological nr., out-neighbour top. nr.)
Flow accumulation, input: 24 bytes
Flow accumulation, output: 16 bytes
(xy-location, flow)
Sorting output into grid 2× 2× 16 = 64 bytes
Total: 200 bytes

I/O-volume per grid cell (pessimistic):
Sorting grid into list of 3× 2× 24 = 144 bytes
(xy-location, topological nr., out-neighbour top. nr.)
Flow accumulation, input: 24 bytes
Flow accumulation, priority queue: 2× 16 = 32 bytes
Flow accumulation, output: 16 bytes
(xy-location, flow)
Sorting output into grid 3× 2× 16 = 96 bytes
Total: 312 bytes

Näıve algorithm

Näıve algorithm

Näıve algorithm

1

1

1

1

1

1

1

1

1

1

1

Näıve algorithm

1

1

2

1

1

2

2

2

2

2

2

2

2

Näıve algorithm

1

1

2

1

1

1

1

2

2

2

2

2

2

2

21

Näıve algorithm

1

1

2

1

1

1

1

2

2

2

2

2

2

2

211

1

Näıve algorithm

1

1

2

2

1

1

1

2

2

2

2

2

2

2

21

1

Näıve algorithm

1

1

2

2

1

1

1

2

2

2

2

2

2

2

31

Näıve algorithmNäıve algorithm

11

1

2

2

1

1

1

2

2

2

2

2

2

2

31 1

Näıve algorithmNäıve algorithm

11

1

3

2

1

1

1

41

1

1

3

3

3

3

3

3

3

Näıve algorithmNäıve algorithm

11

2

4

2

1

1

1

51

1

1

4

4

4

4

4

4

4

Näıve algorithmNäıve algorithm

11

2

5

2

1

1

2

61

1

1

5

5

5

5

5

5

5

Näıve algorithmNäıve algorithm

11

2

3

2

1

2

61

1

1

5

5

5

5

5

5

5

5

Worst-case
running time:
Θ(n2)

Row-by-row scan

Row-by-row scan

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 1 1 1

1 2 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 1 1 1

1 2 1 1 1 1 1

1 3 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 1 1 1

1 2 2 1 1 1 1

1 5 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 1 1 1

1 2 2 1 1 1 1

1 5 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 1 1

1 2 2 2 1 1 1

1 5 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 1 1

1 2 2 2 1 1 1

1 5 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 1 1

1 2 2 2 1 1 1

1 5 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 1 1

1 2 2 2 1 1 1

1 5 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 1 1

1 2 2 2 1 1 1

1 5 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 1 1

1 2 2 2 1 1 1

1 6 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 1 1

1 2 2 2 1 1 1

1 6 1 1 1 1 1

1 1 7 1 1 1 1

1 1 8 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 1 1

1 2 2 2 1 1 1

1 6 1 1 1 1 1

1 1 7 1 1 1 1

1 1 8 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 1 1

1 2 2 2 1 1 1

1 6 1 1 1 1 1

1 1 7 1 1 1 1

1 1 8 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 1 1

1 2 2 2 1 1 1

1 6 1 1 1 1 1

1 1 7 1 1 1 1

1 1 8 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 2 1

1 2 2 2 1 1 1

1 6 1 1 1 1 1

1 1 7 1 1 1 1

1 1 8 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 2 1

1 2 2 2 1 1 1

1 6 1 1 1 1 1

1 1 7 1 1 1 1

1 1 8 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Row-by-row scan

1 1 1 1 3 3 1

1 2 2 2 1 2 1

1 6 1 1 1 2 1

1 4 7 2 6 1 1

1 1 13 1 3 1 1

1 1 1 15 1 1 1

3 3 1 1 1 2 1

Row-by-row scan

1 1 1 1 3 35 1

1 2 2 2 1 32 1

1 6 1 1 1 30 1

1 4 7 2 28 1 1

1 1 13 1 22 1 1

1 1 1 19 1 1 1

3 3 1 1 4 3 1

Running time:
Θ(n)

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Row-by-row scan

Θ(N) I/O’s in the worst case

Z-order scan

Z-order scan

Z-order scan

Z-order scan

Z-order scan

Z-order scan

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Only long
paths require
additional
swapping

Z-order scan on Z-order file

Worst-case terrains vs. real terrains

Worst-case, size n = 82 Worst-case, size 4n

Realistic, size n = 82 Realistic, size 4n

Ω(
√
N) big turns

Θ(1) big turns

Worst-case terrains vs. real terrains

Worst-case, size n = 82 Worst-case, size 4n

Q′ = Q scaled by factor 3.
Far cells of Q: cells on boundary of Q′ where water from Q collects.
In the worst case, maximum number of far cells grows with resolution.

Worst-case terrains vs. real terrains

Realistic, size n = 82 Realistic, size 4n

Q′ = Q scaled by factor 3.
Far cells of Q: cells on boundary of Q′ where water from Q collects.
Confluence assumption: number of far cells for any square Q ≤ constant γ

Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Only long
paths require
additional
swapping

Θ(scan(N))I/Os

N/B blocks ×
γ swaps ×
9-block window
=
Θ(scan(N))I/Os

Cache-aware separator-based algorithm

Θ(
√
M)

Separator cells: each
Θ(
√
M)-th row/column

→
divide grid into Θ(N/M)
subgrids of size Θ(M)

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 1 1 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1
Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 1 1 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1

1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 1 1 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1

3 1

3 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 1 1 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1

3 1

3 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1

3 1

3 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1

1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 3

1 1

4
1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 1 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 3

1 1

41. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 5 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 3

1 1

4
1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 5 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 5 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 5 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 5 1

11 4 2 1 1 1

11 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 5 1

11 4 2 5 1 1

22 1 1 1 1 1

1 3 1

1 1 1

1 1 1

1 1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

separator
flow accumul.

separator
flow directions

Cache-aware separator-based algorithm

11 1 1 1 5 1

11 4 2 5 1 1

22 1 1 1 1 1

1 3 1

1 1 1

1 1 1

1 1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

Cache-aware separator-based algorithm

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

Cache-aware separator-based algorithm

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

Cache-aware separator-based algorithm

1 1

1 1

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

1 1

1 1

11 1 1

41 7 2

1 1

1 2

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

1 1

1 1

11 1 1

41 7 2

1 1

1 2

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

2 2

2 1

11 1 1

41 7 2

1 1

1 2

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

2 2

2 1

11 1 1

41 7 2

1 1

1 2

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

2 2

6 1

11 1 1

41 7 2

1 1

1 2

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

2 2

6 1

11 1 1

41 7 2

1 1

1 2 1 1

1 1

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

2 2

6 1

11 1

41 7

1

1 1 1

1 1

1 3 35 1

2 28 1 1

1 1

2 1

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

2 2

6 1

11 1

41 7

1

1 1 1

1 1

1 3 35 1

2 28 1 1

1 1

2 1

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

2 2

6 1

11 1

41 7

1

1 1 1

1 30

1 3 35 1

2 28 1 1

1 1

2 1

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

2 2

6 1

11 1

41 7

1

1 1 1

1 30

1 3 35 1

2 28 1 1

1 1

2 1

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

2 2

6 1

11 1

41 7

1

1 1 32

1 30

1 3 35 1

2 28 1 1

1 1

2 1

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

2 2

6 1

11 1

41 7

1

1 1 32

1 30

1 3 35 1

2 28 1 1

1 1

2 1

11 13 1 22 1 1

11 1 19 1 1 1

33 1 1 4 3 1

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

Cache-aware separator-based algorithm

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

1. Θ(N/M) subgrids ×
Θ(M/B +

√
M) =

Θ(M/B) =
Θ(scan(N)) I/O’s

2. linear-time algo, input
Θ(N/M) = Θ(scan(N))

3. Θ(scan(N)) I/O’s
(like phase 1)

1. 1 byte of I/O per cell

2. no I/O in practice

3. 9 bytes of I/O per cell

Total: 10 bytes per cell
if grid stored in Z-order

Total: 20 to 60 bytes
if grid stored row by row
(for 1/4 ≤M/B2 ≤ 4)

Results on flow accumulation

algorithm file order worst case ‘realistic’ bytes per cell time (mins)

I/O-volume: N = 232, M = 1 GB, B = 16 to 64KB

time: 3 GHz Pentium, one disk for data + scratch, N = 3.5 · 109 (Neuse), M = 1 GB

row-by-row scan

Z-order scan

Z-order scan

$-aware separ.

$-aware separ.

$-obliv. separ.

$-obliv. separ.

time-fwd proc.

row ↔ Z-order

*) needs tall cache

row by row

row by row

Z-order

row by row

Z-order

row by row

Z-order

any

O(N)

O(N)

O(N/
√
B)

O(scan(N))∗

O(scan(N))

O(scan(N))∗

O(scan(N))∗

O(sort(N))

O(scan(N))∗

O(scan(N))

O(N/
√
B)

O(scan(N))∗

tenthousands

thousands

hundreds

20 to 60

10

>100

>100

70 to 300

16

111

41

39

118

88

sev. hundred

run this!

Further research

• separator-based flooding works well too (146 minutes),
but do not know how to do controlled/partial flooding

• grid techniques also seem applicable to Pfafstetter watershed labelling

• how about flow routing?

• how about multiple flow direction models?
(time-forward processing can do that, can we?)

• does the confluence assumption make sense?

– is γ indeed constant for realistic terrains under increasing resolution?

– what are typical values for γ?

– can we come up with an algorithm to compute γ for a given terrain?

– can we refine the analysis of the scanning algorithms to explain their
good performance?

