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Drainage network analysis

flooding

flow routing

each cell has a flow direction;
following flow directions leads
to boundary
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Analysing I/O-efficiency

main memory
of size M

external memory
(disk)

of infinite size

1 “I/O” transfers

block of size B
CPU

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and grid size N
(sometimes assume M ≥ c ·B2)
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CPU cache

size B

size M

Analysing I/O-efficiency

cache-aware algorithms: know M and B, control caching
cache-oblivious algorithms: do not know M and B, caching left to system

CPU only operates on data in main memory (for free)

scanning N cells takes Θ(scan(N)) = Θ(N/B) I/O’s
sorting N cells takes Θ(sort(N)) = Θ(N

B
logM/B

N
B

) I/O’s



Time-forward processing (Arge et al.)
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cell c
= #cells from which
water passes through c
= size of tree rooted at c
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Time-forward processing

Worst-case I/O’s: Θ(sort(N)) (Arge et al.)

I/O-volume per grid cell (optimistic):
Sorting grid into list of 2× 2× 24 = 96 bytes
(xy-location, topological nr., out-neighbour top. nr.)
Flow accumulation, input: 24 bytes
Flow accumulation, output: 16 bytes
(xy-location, flow)
Sorting output into grid 2× 2× 16 = 64 bytes
Total: 200 bytes

I/O-volume per grid cell (pessimistic):
Sorting grid into list of 3× 2× 24 = 144 bytes
(xy-location, topological nr., out-neighbour top. nr.)
Flow accumulation, input: 24 bytes
Flow accumulation, priority queue: 2× 16 = 32 bytes
Flow accumulation, output: 16 bytes
(xy-location, flow)
Sorting output into grid 3× 2× 16 = 96 bytes
Total: 312 bytes
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Näıve algorithmNäıve algorithm
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Running time:
Θ(n)
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Worst-case terrains vs. real terrains

Worst-case, size n = 82 Worst-case, size 4n

Realistic, size n = 82 Realistic, size 4n

Ω(
√
N) big turns

Θ(1) big turns



Worst-case terrains vs. real terrains

Worst-case, size n = 82 Worst-case, size 4n

Q′ = Q scaled by factor 3.
Far cells of Q: cells on boundary of Q′ where water from Q collects.
In the worst case, maximum number of far cells grows with resolution.



Worst-case terrains vs. real terrains

Realistic, size n = 82 Realistic, size 4n

Q′ = Q scaled by factor 3.
Far cells of Q: cells on boundary of Q′ where water from Q collects.
Confluence assumption: number of far cells for any square Q ≤ constant γ



Z-order scan on Z-order file

√
B

While working
on a block,
have its
neighbours in
memory too

Only long
paths require
additional
swapping

Θ(scan(N))I/Os

N/B blocks ×
γ swaps ×
9-block window
=
Θ(scan(N))I/Os



Cache-aware separator-based algorithm

Θ(
√
M)

Separator cells: each
Θ(
√
M)-th row/column

→
divide grid into Θ(N/M)
subgrids of size Θ(M)
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1. Θ(N/M) subgrids ×
Θ(M/B +

√
M) =

Θ(M/B) =
Θ(scan(N)) I/O’s

2. linear-time algo, input
Θ(N/M) = Θ(scan(N))

3. Θ(scan(N)) I/O’s
(like phase 1)

1. 1 byte of I/O per cell

2. no I/O in practice

3. 9 bytes of I/O per cell

Total: 10 bytes per cell
if grid stored in Z-order

Total: 20 to 60 bytes
if grid stored row by row
(for 1/4 ≤M/B2 ≤ 4)



Results on flow accumulation

algorithm file order worst case ‘realistic’ bytes per cell time (mins)

I/O-volume: N = 232, M = 1 GB, B = 16 to 64KB

time: 3 GHz Pentium, one disk for data + scratch, N = 3.5 · 109 (Neuse), M = 1 GB

row-by-row scan

Z-order scan

Z-order scan

$-aware separ.

$-aware separ.

$-obliv. separ.

$-obliv. separ.

time-fwd proc.

row ↔ Z-order

*) needs tall cache

row by row

row by row

Z-order

row by row

Z-order

row by row

Z-order

any

O(N)

O(N)

O(N/
√
B)

O(scan(N))∗

O(scan(N))

O(scan(N))∗

O(scan(N))∗

O(sort(N))

O(scan(N))∗

O(scan(N))

O(N/
√
B)

O(scan(N))∗

tenthousands

thousands

hundreds

20 to 60

10

>100

>100

70 to 300

16

111

41

39

118

88

sev. hundred

run this!



Further research

• separator-based flooding works well too (146 minutes),
but do not know how to do controlled/partial flooding

• grid techniques also seem applicable to Pfafstetter watershed labelling

• how about flow routing?

• how about multiple flow direction models?
(time-forward processing can do that, can we?)

• does the confluence assumption make sense?

– is γ indeed constant for realistic terrains under increasing resolution?

– what are typical values for γ?

– can we come up with an algorithm to compute γ for a given terrain?

– can we refine the analysis of the scanning algorithms to explain their
good performance?


