The Rauzy triangle plane-filling curve

Herman Haverkort, 2 November 2022

Because it seems hard or impossible to find elsewhere, here is a description of a plane-filling curve that fills half of the Rauzy fractal [1]. I found the underlying tessellation on Stewart Hinsley's website in 2014, which has since been archived [2]. Given the tessellation, the plane-filling curve is obvious. I call it the Rauzy triangle curve, although Rauzy quadrilateral curve might be more accurate. Here it is.

The tessellation can be constructed from three types of tiles. Let x be the Tribonacci constant, that is, $x \approx 1.83929$ is the real root of $x^{3}-x^{2}-x-1$. Let c be \sqrt{x}. Let α be $\arctan (\sqrt{(1+2 / x)}) \approx 55.311^{\circ}$. On refinement level i of the recursive tessellation we will find, as illustrated in Figure 1:

- quadrilaterals with side lengths and angles (see the figure for $i=0$):
$c^{-i}, \pi-2 \alpha, c^{-i-2}, \pi-\alpha, c^{-i-3}, 2 \alpha, c^{-i-1}, \alpha$;
- hexagons with side lengths and angles (see the figure for $i=1$):
$c^{-i-2}, \pi-\alpha, c^{-i-3}, \pi+\alpha, c^{-i-2}, \alpha, c^{-i-1}, \pi-\alpha, c^{-i-2}, 2 \alpha, c^{-i}, \pi-2 \alpha ;$
- octagons with side lengths and angles (see the figure for $i=2$):
$c^{-i-1}, \pi-\alpha, c^{-i-2}, \pi+\alpha, c^{-i-1}, \alpha, c^{-i}, \pi-\alpha, c^{-i-1}, \pi-\alpha, c^{-i-2}, \pi-\alpha, c^{-i-3}, \pi+\alpha, c^{-i-2}, \alpha$.
Tiles only meet vertex-to-vertex and edge-to-edge, that is, no vertex of a tile lies in the interior of a neighbouring tile's edge. The figure also shows in which corners of a tile the plane-filling curve enters and leaves the tile.

The recursive construction starts with one quadrilateral tile at level $i=0$. To obtain refinement level $j=i+1$ from refinement level i, all edges of length c^{-i} are replaced by a chain of three edges with lengths $c^{-j-2}, c^{-j-3}, c^{-j-2}$, as shown in the figure. Since this chain is symmetric in the midpoint of the edge that is replaced, this refinement leaves the sizes (two-dimensional measures) of the tiles unaffected. The refinement turns quadrilaterals into hexagons, hexagons into octagons, and octagons into decagons. The decagons are subsequently subdivided into a quadrilateral, a hexagon and an octagon, as shown in the figure for $i=3$.

A more refined sketch (without the tile boundaries) is shown in Figure 2, along with a threedimensional path whose projection on the horizontal plane follows the plane-filling curve while steadily moving upwards in the third dimension.

A definition in Ventrella's notation [3] (modulo scaling and rotation) is given below (version A); in this notation, $i: x, y, r, r$ means that the vector from the starting point to the end point of the i-th segment of the plane-filling curve is (x, y), while $r=-1$ or $r=1$ indicates whether the segment represents a reversed or a forward copy, respectively, of the scaled, rotated and translated curve as a whole.

Version A:
Square grid
3 segments
segment values:
1: $1, \tan (\alpha), 1,1$
$2:-x, x \tan (\alpha), 1,1$
3: $2 /(x-1), 0,-1,-1$

Version B:
Square grid 3 segments segment values:
1: $-x, x \tan (\alpha),-1,-1$
2: $1, \tan (\alpha),-1,-1$
3: $2 /(x-1), 0,-1,-1$

Version C:
Square grid
3 segments segment values:
1: $-x, x \tan (\alpha),-1,-1$
2: $2 /(x-1), 0,1,1$
3: $1, \tan (\alpha), 1,1$

Two alternative tilings of the decagon (versions B and C) are illustrated in Figure 1, see also the corresponding definitions in Ventrella's notation that are given above. Interestingly, all three versions yield the same plane-filling curve in the end!

References

[1] https://en.wikipedia.org/wiki/Rauzy_fractal
[2] https://web.archive.org/web/20120129083647/http://www.meden.demon.co.uk/Fractals/ cubic4.html
[3] J. Ventrella: Brain-filling curves-A fractal bestiary. Eyebrain Books, 2012.
[4] Herman Haverkort: Plane-filling trails, in Proc. Symp. on Comp. Geom. Media Exposition 2020, LIPIcs 164:81:1-5; full version at CoRR, https://arxiv.org/abs/2003.12745.

Figure 1: Graphical definition of the Rauzy triangle plane-filling curve. Edges marked with a number - k have length c^{-i-k}. Each pie slice represents an angle α.

Figure 2: Left: a more detailed sketch of the Rauzy triangle curve. Right: the Rauzy triangle curve visualised as an ascending path [4].

