The Rauzy triangle plane-filling curve

Herman Haverkort, 2 November 2022

Because it seems hard or impossible to find elsewhere, here is a description of a plane-filling curve that
fills half of the Rauzy fractal [1]. I found the underlying tessellation on Stewart Hinsley’s website in 2014,
which has since been archived [2]. Given the tessellation, the plane-filling curve is obvious. I call it the
Raugzy triangle curve, although Rauzy quadrilateral curve might be more accurate. Here it is.

The tessellation can be constructed from three types of tiles. Let x be the Tribonacci constant, that
is, x ~ 1.83929 is the real root of x®> — x? —x — 1. Let ¢ be VX Let o be arctan(\/(l +2/x)) =~ 55.311°.
On refinement level 4 of the recursive tessellation we will find, as illustrated in Figure 1:

e quadrilaterals with side lengths and angles (see the figure for i = 0):
chr—20, ¢ 2 —a, 73 20, ¢
e hexagons with side lengths and angles (see the figure for ¢ = 1):
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e octagons with side lengths and angles (see the figure for i = 2):
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Tiles only meet vertex-to-vertex and edge-to-edge, that is, no vertex of a tile lies in the interior of a
neighbouring tile’s edge. The figure also shows in which corners of a tile the plane-filling curve enters
and leaves the tile.

The recursive construction starts with one quadrilateral tile at level ¢ = 0. To obtain refinement
level j =i+ 1 from refinement level 4, all edges of length ¢~* are replaced by a chain of three edges with
lengths ¢ =972, ¢7773,¢7772, as shown in the figure. Since this chain is symmetric in the midpoint of the
edge that is replaced, this refinement leaves the sizes (two-dimensional measures) of the tiles unaffected.
The refinement turns quadrilaterals into hexagons, hexagons into octagons, and octagons into decagons.
The decagons are subsequently subdivided into a quadrilateral, a hexagon and an octagon, as shown in
the figure for i = 3.

A more refined sketch (without the tile boundaries) is shown in Figure 2, along with a three-
dimensional path whose projection on the horizontal plane follows the plane-filling curve while steadily
moving upwards in the third dimension.

A definition in Ventrella’s notation [3] (modulo scaling and rotation) is given below (version A);
in this notation, i : x,y,r,r means that the vector from the starting point to the end point of the i-th
segment of the plane-filling curve is (z, y), while r = —1 or r = 1 indicates whether the segment represents
a reversed or a forward copy, respectively, of the scaled, rotated and translated curve as a whole.

Version A: Version B: Version C:

Square grid Square grid Square grid

3 segments 3 segments 3 segments

segment values: segment values: segment values:

1: 1, tan(a), 1,1 1: —x, x tan(a), —1, —1 1: —x, x tan(a), —1, -1
2: —x, xtan(a), 1,1 2: 1,tan(a), -1, -1 2:2/(x—1),0,1,1
3:2/(x—1),0,—-1,-1 3:2/(x—1),0,—-1,-1 3: 1,tan(«), 1,1

Two alternative tilings of the decagon (versions B and C) are illustrated in Figure 1, see also the
corresponding definitions in Ventrella’s notation that are given above. Interestingly, all three versions
yield the same plane-filling curve in the end!
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Figure 1: Graphical definition of the Rauzy triangle plane-filling curve. Edges marked with a number —k

ver
have length ¢=*~*. Each pie slice represents an angle cv.
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Figure 2: Left: a more detailed sketch of the Rauzy triangle curve. Right: the Rauzy triangle curve

visualised as an ascending path [4].



