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1 Introduction

One of the many ways in which plane-filling curves can be described is the following, used by Ventrella1.
One starts with a line segment; the segment is directed (it has a head and a tail) and oriented (its left
and right side are distinct: one side is marked). We indicate the direction and orientation by an arrow
head on the marked side of the head. A replacement rule describes how such a line segment is replaced
by a polyline (a chain) of directed, oriented line segments. Arrow heads on the segments of the polyline
help to determine how each segment is obtained from the original line segment by scaling, translation,
rotation, and/or reflection (see Figure 1 for an example). Applying the replacement rule recursively to
each line segment results in a fractal curve. If the sum of the squared lengths of the segments of the
replacing polyline is equal to the squared length of the original line segment, then the fractal curve has
dimension two and, if it does not overlap itself too much, it will be a plane-filling curve.

a) b) c)

Figure 1: a) A definition of the Peano curve, stretched by a factor
√

3 in the horizontal dimension. b) The
result of expanding the definition once. c) The result of expanding the definition two more times—the
contours of the rectangular area filled by the curve start to become visible.

2 The root-2 family

By some measure, the simplest plane-filling curves are those that are defined by a replacement rule with
two segments of the same length. Ventrella calls this the root-2 family. Suppose the replacement segments
each have length one. Because the starting point and the end point of the chain of segments must be a
distance

√
2 apart, the two segments must make a 90 degrees’ angle with each other. We consider curves

to be specimens of the same curve if a similarity transformation maps one curve to the other. Thus we
may assume, without loss of generality, that the two segments make a right turn; all curves based on left
turns are just reflected copies of right-turn-based curves, and we do not need to discuss them separately.

The only thing that remains to specify is where the arrow heads are. For each line segment, there are
four options:

arrow position in Ventrella’s notation short notation
at the head of the line segment, on the left 1, 1 ⇀ or q
at the head of the line segment, on the right 1,−1 ⇁ or p
at the tail of the line segment, on the left −1, 1 ↼ or d
at the tail of the line segment, on the right −1,−1 ↽ or b

1. J. Ventrella: Brain-filling curves—A fractal bestiary. Eyebrain Books, 2012.
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Each curve of the root-2 family is described by the pair of letters that specifies the chosen option for the
first segment and the chosen option for the second segment. Some of these letter pairs define symmetric
curves. Each symmetric curve is defined by four equivalent letter pairs, since for symmetric curves,
reversing a segment (moving the arrow head to the other end) does not have any effect. Asymmetric
curves are each described by two pairs of letters: one pair describes the reflected reverse of the other.
Thus, in effect, their are only six different curves in the root-2 family:

def. name
qq Lévy C-curve (symmetric)
qp “birds”
qd → identical to qq
qb Harter-Heighway Dragon
pq → reflected reverse of qp
pp Pólya curve (Sierpiński curve) (symmetric)
pd alternative isosceles-right-triangle sweep

(not to be confused with pp, which fills the same shape in a different way)

pb → identical to pp
dq → identical to qq
dp → reflected reverse of pd
dd → identical to qq
db “sponge”
bq → reflected reverse of qb
bp → identical to pp
bd → reflected reverse of db
bb → identical to pp

Below, these curves are depicted with a colour gradient, such that each curve changes colour from
brownish, via yellow, red, purple, and blue to green as it twists its way from the beginning to the end:

qq Levy, Cesaro
related: qd,dq,dd

qp “birds”
related: pq

qb Harter-Heighway Dragon
related: bq

pp Pólya, Sierpiński, Knopp
related: pb,bp,bb

pd
related: dp

db “sponge”
related: bd

It is not immediately obvious that all of these curves are plane-filling curves. For qb, pp and pd this
is well-known and, especially for the triangle sweeps, it is relatively easy to see, as the curve follows a
recursive tessellation that is relatively easy to recognize. But what about the other curves? By definition,
a curve is plane-filling if its image (the set of points visited by the curve) has positive two-dimensional
Jordan content. This is equivalent to saying that somewhere, there must be a square that is entirely
covered by the curve.

For the Lévy curve this can be shown as follows. We associate each oriented segment h in the recursive
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construction with an isosceles right triangle T , whose interior lies to the left of h, and of which h is the
hypothenuse; conversely, we consider the hypothenuse h of any right triangle T to be directed, such that
the interior of T lies to the left of h. Let G0 be a plane-filling grid of unit squares, each subdivided into
four right isosceles triangles that meet in the centre of the square, such that the initial line segment in
the curve definition is one of the long edges (hypothenuses) in this grid. For i = 1, 2, 3, ..., let Gi be the
grid of triangles obtained by cutting each triangle of Gi−1 along the bisector of its right angle.

The definition of the Lévy curve establishes a one-to-two correspondence between triangles of Gi−1 and
Gi: when T is a triangle in Gi−1, then T ′ and T ′′ are the triangles of Gi whose directed hypothenuses
are obtained from applying the segment rewriting rule to the directed hypothenuse of T ; conversely, for
each triangle T in Gi, there is exactly one triangle T ◦ in Gi−1 such that the hypothenuse of T can be
obtained by applying the segment rewriting rule to the hypothenuse of T ◦. Furthermore, observe that
if we start from a segment h and apply the segment rewriting rule to the limit, we will not reach any
points at distance more than |h| (the length of h) from h.

If we now sketch the Lévy curve by applying the rewriting rule 16 times (using a computer program),
starting from a line segment of length 1, we find at least one square Q that has the following properties:
Q has side length (

√
2)−16, and all 24 directed hypothenuses in G16 that have at least one end point

on Q, are part of the curve. Now, by the previous observations, for each point q inside Q there is a
sequence Σ of triangles T16, T17, T18, ... with directed hypothenuses h16, h17, h18, ... in G16, G17, G18, ...,
respectively, with the following properties:

• h16 is one of the 24 directed hypothenuses that have a vertex on Q;
• for i > 16, each hi is one of the segments obtained by applying the segment rewriting rule to hi−1;
• Σ converges to q.

Thus, if we keep applying the segment rewriting rule, then, in the limit, each point q in Q is covered by
the curve.

The “birds” and “sponge” curves can be shown to be plane-filling in a similar way, except that we
consider a sequence of grids in which each triangle is covered twice; once with the hypothenuse directed
such that the triangle lies to the left; and once with the hypothenuse directed such that the triangle
lies to the right2. Thus, around a square Q, we consider 48 directed and oriented hypothenuses: each
hypothenuse is visited four times (in each of two directions, for each of two adjacent triangles). Otherwise
the proof is the same.

3 The root-3 family, triangle-grid subfamily

The root-3 family consists of curves whose segment rewriting rule consists of a chain of three segments
of length 1, such that the starting point and the end point are a distance

√
3 apart. Modulo symmetries,

we can distinguish two possible genera in which the segments lie on a grid of equilateral triangles: the
zigzag (Z) genus, where the chain makes a 120 degrees’ turn to the right, followed by a 120 degrees’ turn
to the left; and the hook (J) genus, where the chain first goes straight ahead over two segments, and
then turns 120 degrees to the right:

Z J

For each genus, there are, in principle, 43 = 64 ways to put arrowheads on the segments. However, after
expanding the definition k times for some number k, many of these curves contain the same segment

2. Alternatively, we can cut each triangle in two subtriangles; one to be covered by the hypothenuse in one direction; the
other to be covered in the other direction. Thus, each triangle in the grid is covered only once, but associating triangles
with segments in this grid is slightly more complicated.
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with the same arrowhead twice. This reduces the number of different segments on level k to less than 3k.
If such a curve would be plane-filling, then the area filled by the curve would have to be some positive
constant c times the squared scale factor. By the above, we would have c·12 < 3k ·c·((

√
3)−k)2 = c, which

is not possible. Therefore, if, at some level of expansion, the same segment with the same arrowhead
occurs twice, then the curve cannot be plane-filling.

For each Z- or J-curve for which I did not find a duplicate segment after applying the segment rewriting
rule eight times, I could establish a matching one-to-three correspondence between grids of triangles or
related shapes, and I also found a (sometimes very small) triangle completely covered by the curve—thus
proving that the curve is plane-filling.

Among the Z-curves, there are essentially 20 different curves, 12 of which are plane-filling:

root-3 family, triangular-grid subfamily, zigzag (Z) genus
def. name plane-filling? def. name plane-filling?
Zqqq Knuth’s Terdragon yes Zdqq → reflected reverse of Zqqd
Zqqp “cloud” yes Zdqp → identical to Zpqp
Zqqd no Zdqd → identical to Zpqp
Zqqb → identical to Zqqq Zdqb “palace” yes
Zqpq “Peano ballet” yes Zdpq → reflected reverse of Zqpd
Zqpp (no name) yes Zdpp → identical to Zppp
Zqpd no Zdpd → identical to Zppp
Zqpb → identical to Zqpq Zdpb (no name) yes
Zqdq → identical to Zqpq Zddq → reflected reverse of Zqdd
Zqdp “fountain” yes Zddp → identical to Zppp
Zqdd no Zddd → identical to Zppp
Zqdb → identical to Zqpq Zddb (no name) yes
Zqbq → identical to Zqqq Zdbq → reflected reverse of Zqbd
Zqbp “claw” yes Zdbp → identical to Zpqp
Zqbd no Zdbd → identical to Zpqp
Zqbb → identical to Zqqq Zdbb (no name) yes
Zpqq → reflected reverse of Zqqp Zbqq → identical to Zqqq
Zpqp Peano (stretched) yes Zbqp → reflected reverse of Zpqb
Zpqd → identical to Zpqp Zbqd → reflected reverse of Zdqb
Zpqb no Zbqb → identical to Zqqq
Zppq → reflected reverse of Zqpp Zbpq → identical to Zqpq
Zppp “butterfly” yes Zbpp → reflected reverse of Zppb
Zppd → identical to Zppp Zbpd → reflected reverse of Zdpb
Zppb no Zbpb → identical to Zqpq
Zpdq → reflected reverse of Zqdp Zbdq → identical to Zqpq
Zpdp → identical to Zppp Zbdp → reflected reverse of Zpdb
Zpdd → identical to Zppp Zbdd → reflected reverse of Zddb
Zpdb no Zbdb → identical to Zqpq
Zpbq → reflected reverse of Zqbp Zbbq → identical to Zqqq
Zpbp → identical to Zpqp Zbbp → reflected reverse of Zpbb
Zpbd → identical to Zpqp Zbbd → reflected reverse of Zdbb
Zpbb no Zbbb → identical to Zqqq
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Zqqq Terdragon
related: Zqqb,Zqbq,Zqbb,Zbqq,Zbqb,
Zbbq,Zbbb,Jqqb,Jqbq,Jbqq

Zqqp “cloud”
related: Zpqq

Zqpq “Peano ballet”
related: Zqpb,Zqdq,Zqdb,Zbpq,Zbpb,
Zbdq,Zbdb,Jqbp

Zqpp (no name)
related: Zppq

Zqdp “fountain”
related: Zpdq,Jdqp

Zqbp “claw”
related: Zpbq,Jqdb

Zpqp Peano (stretched)
related: Zpqd,Zpbp,Zpbd,Zdqp,Zdqd,
Zdbp,Zdbd,Jpdq

Zppp “butterfly”
related: Zppd,Zpdp,Zpdd,Zdpp,Zdpd,
Zddp,Zddd,Jpdp,Jpdd,Jddp

Zdqb “palace”
related: Zbqd

Zdpb (no name)
related: Zbpd

Zddb (no name)
related: Zbdd

Zdbb (no name)
related: Zbbd
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Among the J-curves, there are 12 curves that are equivalent to (part of) another curve that succeeds it
in the lexicographical order3; among the remaining curves, 28 are plane-filling, 24 are not.

root-3 family, triangular-grid subfamily, hook (J) genus
def. name plane-filling? def. name plane-filling?
Jqqq “lace” yes Jdqq no
Jqqp (no name) yes Jdqp → identical to reflected last 2/3 of Zqdp
Jqqd no Jdqd (no name) yes
Jqqb → identical to first 2/3 of Zqqq Jdqb (no name) yes
Jqpq (no name) yes Jdpq no
Jqpp “Zealand dragon” yes Jdpp no
Jqpd no Jdpd “Peano stripes” yes
Jqpb no Jdpb “Peano railroads” yes
Jqdq “curl” yes Jddq no
Jqdp “magic mushroom” yes Jddp → identical to first 2/3 of Zppp
Jqdd no Jddd “shield” yes
Jqdb → identical to first 2/3 of Zqbp Jddb (no name) yes
Jqbq → identical to half of Zqqq Jdbq no
Jqbp → identical to half of Zqpq Jdbp no
Jqbd no Jdbd “forest” yes
Jqbb no Jdbb “leaves” yes
Jpqq (no name) yes Jbqq → identical to last 2/3 of Jqbq
Jpqp “sail” yes Jbqp no
Jpqd → reflected reverse of last 2/3 of Jqdp Jbqd “foam” yes
Jpqb no Jbqb (no name) yes
Jppq (no name) yes Jbpq no
Jppp “ice cream” yes Jbpp no
Jppd no Jbpd “beetlefrog” yes
Jppb no Jbpb “crab” yes
Jpdq → identical to half of Zpqp Jbdq → identical to last 2/3 of Jpbq
Jpdp → identical to half of Zppp Jbdp no
Jpdd → reflected reverse of last 2/3 of Jpdp Jbdd (no name) yes
Jpdb no Jbdb (no name) yes
Jpbq “Peano waters” yes Jbbq no
Jpbp “tripolya” yes Jbbp no
Jpbd no Jbbd “crystal” yes
Jpbb no Jbbb (no name) yes

3. This includes all 7 J-curves in Ventrella’s book, which are ultimately part of Zqqq, Zpqp, or Zppp.
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Jqqq “lace”
related: –

Jqqp
related: –

Jqpq
related: –

Jqpp “Zealand dragon”
related: –

Jqdq “curl”
related: –

Jqdp “magic mushroom”
related: Jpqd

Jpqq
related: –

Jpqp “sail”
related: –

Jppq
related: –

Jppp “ice cream”
related: –

Jpbq “Peano waters”
related: Jbdq

Jpbp “tripolya”
related: –

Jdqd
related: –

Jdqb
related: –

Jdpd “Peano stripes”
related: –
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Jdpb “Peano railroads”
related: –

Jddd “shield”
related: –

Jddb
related: –

Jdbd “forest”
related: –

Jdbb “leaves”
related: –

Jbqd “foam”
related: –

Jbqb
related: –

Jbpd “beetlefrog”
related: –

Jbpb “crab”
related: –

Jbdd
related: –

Jbdb
related: –

Jbbd “crystal”
related: –

Jbbb
related: –
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4 The root-3 family, octilinear subfamily

There are other ways to replace a line segment of length 1 by a chain of three segments of length 1/
√

3
each. For example, we could use line segments that make angles that are multiples of 45 degrees—there
are three essentially different ways to do that:

OA OB OC

Each of these three patterns allows 64 options for placing the arrowheads. Some of these result in beautiful
curves, but I do not know whether they are plane-filling curves. The proof technique that was used above
for the Lévy curve seems hard to apply, because now, the segments do not stick to the edges of a regular
grid. Some examples of curves based on patterns with 45, 90 and 135 degrees’ angles are the following:

OAqdq
related: ?

OApqd
related: ?

OAbpb
related: ?

OBqdq
related: ?

OBqdb
related: ?

OBpbq
related: ?

OBpbp
related: ?

OBpbd
related: ?

OBdqd
related: ?
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OBdbp
related: ?

OCqpb
related: ?

OCqbp
related: ?

OCpbq
related: ?

OCdbp
related: ?

OCdqq
related: ?

OCbpb
related: ?
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