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Finite Element Method:

repeat

for each square cell

retrieve current values
of the four vertices

compute and store new values
for the four vertices

until happy

For example: plate with heat sources and sinks at subset of vertices;

compute steady-state heat distribution and flow.
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Finite Element Method:

repeat

for each square cell

retrieve current values
of the four vertices

compute and store new values
for the four vertices

until happy

In which order? Row by row?

In what data structure? Matrix?

For example: plate with heat sources and sinks at subset of vertices;

compute steady-state heat distribution and flow.
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Next iteration: reverse order.

Cell/face/edge variables also supported
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On any edge between two quadrants

order 2nd time = reverse order 1st time
input outputleft right

Hilbert order
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input outputleft right

Hilbert order

Consecutive squares always share an edge

→(?) well-shaped partitions for load balancing
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Desiderata:

• octree traversal (cubes/simplices recursively subdivided into 8 parts)

• face-continuous: consecutive cells share a face

• palindromic: for each pair of adjacent cubes/simplices C1 and C2,

second traversal of common face is reverse of first traversal
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Desired: palindromic, face-continuous octree traversal

Bader 2013: finds no solution within a restricted framework

Weinzierl (pers. conf.):

Brute-force search 4× 4× 4 finds solutions, but all self-similar recursive expansions fail.

Brute-force search 8× 8× 8 is infeasible (and would still generate false positives).
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Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

142
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Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

15

69
142
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Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations

Try to refine 4× 4× 4 traversals from S into 8× 8× 8 traversals by

replacing 2× 2× 2 traversals in octants by 4× 4× 4 traversals from S′
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Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations
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For each traversal from S:

exhaustive search of all choices of patterns ∈ {0, ..., 255} for 12 interior faces:

verify for each octant:

S′ contains 4× 4× 4 traversal with matching octant order and face patterns
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Generate S = all 4× 4× 4 traversals that:
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• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations
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410 traversals from S
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For each traversal from S:
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verify for each octant:

S′ contains 4× 4× 4 traversal with matching octant order and face patterns



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;
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or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations

?

?

?

410

410 19 680

?

?

?

?

?

?

?

??
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exhaustive search of all choices of patterns ∈ {0, ..., 255} for 12 interior faces:
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unsuccessful for all but
1 traversal from S
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Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns
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Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations

?

?

?

410

410 19 680

1

no solution found →
no palindr., face-contin.
octree traversal exists

?

?

?

?

?

?

?

??

For each traversal from S:

exhaustive search of all choices of patterns ∈ {0, ..., 255} for 12 interior faces:

verify for each octant:

S′ contains 4× 4× 4 traversal with matching octant order and face patterns

48
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3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube

Desired: palindromic, face-continuous octree traversal

Cons:

• recursive subdivision into 27 subcubes → adaptive refinement less adaptive;

• partitions have larger surface-for-volume than with octree traversals (Sasburg 2011).
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Faloutsos’s traversal (generalized from Faloutsos 1986)

Desired: palindromic, face-continuous octree traversal

Octants A and B share face f → traversal in B is reversed image of A under reflection in f

L:

stack for pushing
popping vertices on

left

face

R: right

B: bottom

T: top

F: front

H: hind

also on R
also on L

also on T
also on Bon 7th stack
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Morton order (Morton 1966): no rotations or reflections

Desired: palindromic, face-continuous octree traversal

L:

stack for pushing
popping vertices on

left

face

R: right

B: bottom

T: top

F: front

H: hind

pushed onto R;
turned onto L
after 4th octant

pushed onto T ;
turned onto B
aft. 2nd/6th oct.

pushed onto H;
turned onto F
aft. 1/3/5/7th

quasi-face-continuous: interior of union of consecutive set of cells
has O(1) connected components.

homodromic: 2nd traversal of face
= reverse of 1st or the same
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Desiderata:

• octree traversal (cubes/simplices recursively subdivided into 8 parts)

• face-continuous: consecutive cells share a face

altern.: quasi-face-cont.: interior of union of set of consecutive cells has O(1) components

• palindromic: for every set of adjacent cubes/simplices sharing a common face/edge,
every subseq. traversal of common face/edge is reverse of previous traversal

altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

non-
homodromic

homodromic

palindromic

non-face-continuous quasi-face-continuous face-continuous

1000s of generalized
Hilbert curves

Morton traversal

Faloutsos’s traversal computer says no

octree trav.
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Desiderata:

• octree traversal (cubes/simplices recursively subdivided into 8 parts)

• face-continuous: consecutive cells share a face

altern.: quasi-face-cont.: interior of union of set of consecutive cells has O(1) components

• palindromic: for every set of adjacent cubes/simplices sharing a common face/edge,
every subseq. traversal of common face/edge is reverse of previous traversal

altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

non-
homodromic

homodromic

palindromic

non-face-continuous quasi-face-continuous face-continuous

1000s of generalized
Hilbert curves

Morton traversal

Faloutsos’s traversal computer says no

octree trav.

open

How to recognize
quasi-face-continuous

traversals?

computer says no



Tetrahedral meshes
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2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

α = π/2:
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Only one way to subdivide into 8 equal, similar tetrahedra.

→ between traversals of A and C, stack with vertices of common edge must be reversed

→ B must be traversed between A and C

→ combine conditions on all edges → no palindromic traversal possible

A

B

C

(still hope for: quasi-face-continuous, homodromic traversal)

Four subtetrahedra share a face with only one other → no face-continuous traversal
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Open problems:

• insightful proof of negative results on cubes

• meaningful surface-to-volume measures—and how to compute them?

• what tetrahedra are reptiles?

• (traversals for 1/6, 1/12, 1/24 cube tetrahedra that do not follow bisection scheme?)

• hypercubes in > 3 dimensions?

• simplexes in > 3 dimensions?

• accommodating adaptive cell shapes?
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• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh
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• cache-efficient!
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no complicated vertex/edge/face index!

• easy to parallelize! each processor gets part of traversal

(only diff: values for variables on boundary with other processor are

read/written to different stacks)


