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Traversing a regular grid
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repeat
for each square cell
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For example: plate with heat sources and sinks at subset of vertices;
compute steady-state heat distribution and flow.
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Traversing a regular grid

O—0O——C0O—0O—=~0

In which order? Row by row?

C) <> <> <> C) FiNITE ELEMENT METHOD:
repeat

for each square cell

C) <> <> <> C) retrieve current values

of the four vertices

compute and store new values
r the four vertices
C\ /2 ) ) f) until happy )
J N \/ \/ \_

In what data structure? Matrix?

O () () () Q
/ / /
For example: plate with heat sources and sinks at subset of vertices;
compute steady-state heat distribution and flow.

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Traversing an irregular grid
O

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Traversing an irregular grid
O

Hilbert order

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Traversing an irregular grid

@

Hilbert order

vy

- | —

— | L—»

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Traversing an irregular grid

@

Hilbert order

vy

- | —

— | L—»

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Traversing an irregular grid

) Hilbert order
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20 values accessed before
and needed again
new values in order
of last access

input left right | |output

old values in order —%
of first access
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Traversing an irregular grid

Hilbert order
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Traversing an irregular grid

@ Hilbert order
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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Traversing an irregular grid
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g |5 15 24
1 16 29
2 20 21 30
3 19 25 36
20 23 31 35
o 22 37 34
Next iteration: reverse order. input left N [ouiput
Cell /face/edge variables also supported
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Traversing an irregular grid

Hilbert order
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On any edge between two quadrants input left e [output
order 2nd time = reverse order 1st time
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Traversing an irregular grid

Hilbert order

I - ¢
I
S
— —
v
Consecutive squares al\./v-ays share an edge - input left e [output
—(?) well-shaped partitions for load balancing
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Traversing an irregular grid
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Traversing an irregular grid

Sierpiniski order
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What about 3D?

Desiderata:
e octree traversal (cubes/simplices recursively subdivided into 8 parts)
e face-continuous: consecutive cells share a face

e palindromic: for each pair of adjacent cubes/simplices Cy and Cs,
second traversal of common face is reverse of first traversal
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every subseq. traversal of common face/edge is reverse of previous traversal
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What about cubes?

Desired: palindromic, face-continuous octree traversal

BADER 2013: finds no solution within a restricted framework
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What about cubes?

Desired: palindromic, face-continuous octree traversal

BADER 2013: finds no solution within a restricted framework
WEINZIERL (PERS. CONF.):

Al

Brute-force search 4 x 4 x 4 finds solutions, but all self-similar recursive expansions fail.

=
»

Brute-force search 8 x 8 x 8 is infeasible (and would still generate false positives).
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one; €———— I' I or il or j‘u

e are face-continuous;
e have matching patterns on opposite sides of each of the twelve interior 2x2-faces.
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one, ¢+—— I I or ﬁ or ju

e are face-continuous;
e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.

Finds 8384, for example:
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one, ¢+—— I I or ﬁ or ju

e are face-continuous;
e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one, ¢+—— I I or ﬁ or ju

e are face-continuous;
e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.

Finds 8384, for example:

( ..
/ Identify face patterns
1 by id € {0, ..., 255}
9
Lz
1
1
1 J
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one, ¢+—— I I or ﬁ or ju

e are face-continuous;
e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.

Finds 8384, for example:

S =
48 x 8384 = 402432
traversals obtained by

Identify face patterns
by id € {0,...,255}

reflections and rotations
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one, ¢+—— I I or ﬁ or ju

e are face-continuous;
e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.

Finds 8384, for example:

S =
48 x 8384 = 402432
traversals obtained by

Identify face patterns
by id € {0,...,255}

reflections and rotations

Try to refine 4 x 4 x 4 traversals from S into 8 x 8 x 8 traversals by
replacing 2 x 2 x 2 traversals in octants by 4 x 4 x 4 traversals from S’
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one; €———— j‘j or il or ju

e are face-continuous;

e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.

Finds 8384, for example:

S =
48 x 8384 = 402432
traversals obtained by

Identify face patterns
by id € {0,...,255}

reflections and rotations

For each traversal from S:
exhaustive search of all choices of patterns € {0, ...,255} for 12 interior faces:
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one; €———— j‘j or il or ju

e are face-continuous;

e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.

Finds 8384, for example:

S =
48 x 8384 = 402432
traversals obtained by

Identify face patterns
by id € {0,...,255}

reflections and rotations

For each traversal from S:
exhaustive search of all choices of patterns € {0, ...,255} for 12 interior faces:
verify for each octant:

S’ contains 4 x 4 x 4 traversal with matching octant order and face patterns
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one; €———— j‘j or il or j]/t

e are face-continuous;

e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.

Finds 8384, for example:

S =
48 x 8384 = 402432
traversals obtained by

Identify face patterns
by id € {0,...,255}

reflections and rotations
unsuccessful for all but

410 traversals from S
(no 8 x 8 x 8-refinement exists)

For each traversal from S:
exhaustive search of all choices of patterns € {0, ...,255} for 12 interior faces:
verify for each octant:

S’ contains 4 x 4 x 4 traversal with matching octant order and face patterns
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one; €———— j‘j or il or ju

e are face-continuous;

e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.

Finds,&SBf, for example:

410

Identify face patterns
by id € {0,...,255}

S§'= 410 19680
48 x 9354 = 2
traversals obtained by

reflections and rotations
unsuccessful for all but

410 traversals from S
(no 8 x 8 x 8-refinement exists)

For each traversal from S:
exhaustive search of all choices of patterns € {0, ..., 255} for 12 interior faces:
verify for each octant:
S’ contains 4 x 4 x 4 traversal with matching octant order and face patterns
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one; €———— j‘j or il or j]/t

e are face-continuous;

e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.

Finds,&SSf, for example:

410

Identify face patterns
by id € {0,...,255}

S'"= 410 19680
48 x 9884 = 2
traversals obtained by
reflections and rotations

unsuccessful for all but

1 traversal from S
(no 16x16x16-refinement)

For each traversal from S:
exhaustive search of all choices of patterns € {0, ...,255} for 12 interior faces:
verify for each octant:

S’ contains 4 x 4 x 4 traversal with matching octant order and face patterns
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one; €———— j‘j or il or ju

e are face-continuous;

e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.
Finds,&SBf, for example:

1 =

28
5 = 10680
48 x o — 209750

traversals obtained by

Identify face patterns
by id € {0,...,255}

reflections and rotations unsuccessful for all but

1 traversal from S
(no 16x16x16-refinement)

For each traversal from S:
exhaustive search of all choices of patterns € {0, ..., 255} for 12 interior faces:
verify for each octant:
S’ contains 4 x 4 x 4 traversal with matching octant order and face patterns
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What about cubes?

Generate S = all 4 x 4 x 4 traversals that:

e traverse octants one by one, ¢+—— I I or il or I | I

e are face-continuous;
e have matching patterns on opposite sides of each of the twelve interior 2 < 2-faces.

Finds,&SSf, for example:
1

48
5 = 10680
48 x o — 209750

traversals obtained by

Identify face patterns
by id € {0,...,255}

reflections and rotations

no solution found —

no palindr., face-contin.
octree traversal exists

For each traversal from S:
austive search of all choices of patterns € {0, ..., 255} for 12 interior faces:
verify for each octant:

S’ contains 4 x 4 x 4 traversal with matching octant order and face patterns

ex
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What about cubes?

3D Peano curve (applied by WEINZIERL 2009):
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What about cubes?

3D Peano curve (applied by WEINZIERL 2009):

in each
subcube,
reflect pattern
to connect to

/ previous and
[ next subcube

2z
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What about cubes?

3D Peano curve (applied by WEINZIERL 2009):

in each
subcube,

reflect pattern
to connect to

/ previous and
] [ next subcube
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in each
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reflect pattern
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/ previous and
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What about cubes?

3D Peano curve (applied by WEINZIERL 2009):

in each

subcube,
reflect pattern
to connect to
/ previous and
] [ next subcube

Desired: palindromic, face-continuous og#f€e traversal

Cons:
e recursive subdivision into 27 subcubes — adaptive refinement less adaptive;
e partitions have larger surface-for-volume than with octree traversals (SASBURG 2011).
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What about cubes?

Faloutsos's traversal (generalized from FALOUTSOS 1986)

Octants A and B share face f — traversal in B is reversed image of A under reflection in f

Desired: palindromic, fa;a-eeﬂ't'n‘rm octree traversal
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What about cubes?

Faloutsos's traversal (generalized from FALOUTSOS 1986)

Octants A and B share face f — traversal in B is reversed image of A under reflection in f

left
right
: i . bottom
: stack for %& vertices on to face

on 7th stack

also on R alsoon T

Desired: palindromic, fa;a-eeﬂ't'n‘rm octree traversal
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What about cubes?

Morton order (MORTON 1966): no rotations or reflections

Desired;_palinerorT, lace-comtTMoUs octree traversal
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What about cubes?

Morton order (MORTON 1966): no rotations or reflections

homodromic: 2nd traversal of face
= reverse of 1st or the same

Desired;_palinerorT, [ace-comtToUs octree traversal
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What about cubes?

Morton order (MORTON 1966): no rotations or reflections

NN

homodromic: 2nd traversal of face
= reverse of 1st or the same
quasi-face-continuous: interior of union of consecutive set of cells

. . /.
Desired;_palineroriT, lace-comtTMoUs octree traversal has O(1) connected components.
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What about cubes?

Morton order (MORTON 1966): no rotations or reflections

L: left

R: right

B: stack for m vertices on bottom face
T popping top

F:

H:

pushed onto R;  pushed onto T';  pushed onto H,
homodromic: 2nd traversal of face turned onto L turned onto B turned onto F
— reverse of 1st or the same after 4th octant  aft. 2nd/6th oct. aft. 1/3/5/7th

quasi-face-continuous: interior of union of consecutive set of cells

. . /.
Desired;_palin€roTTTT, [ace-cemtiMIoUs octree traversal has O(1) connected components.
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What about cubes?

Desiderata:
e octree traversal (cubes/simplices recursively subdivided into 8 parts)

e face-continuous: consecutive cells share a face
altern.: quasi-face-cont.: interior of union of set of consecutive cells has O(1) components
e palindromic: for every set of adjacent cubes/simplices sharing a common face/edge,
every subseq. traversal of common face/edge is reverse of previous traversal

altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

face-continuous

palindromic computer says no

non-face-continuous quasi-face-continuous

octree trav.

non-
homodromic

homodromic
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What about cubes?

Desiderata:
e octree traversal (cubes/simplices recursively subdivided into 8 parts)

e face-continuous: consecutive cells share a face

altern.: quasi-face-cont.: interior of union of set of consecutive cells has O(1) components

e palindromic: for every set of adjacent cubes/simplices sharing a common face/edge,
every subseq. traversal of common face/edge is reverse of previous traversal

altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

non-face-continuous quasi-face-continuous face-continuous

octree trav.

non-
homodromic

homodromic computer says no

palindromic computer says no
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What about cubes?

Desiderata:
e octree traversal (cubes/simplices recursively subdivided into 8 parts)

e face-continuous: consecutive cells share a face
altern.: quasi-face-cont.: interior of union of set of consecutive cells has O(1) components

e palindromic: for every set of adjacent cubes/simplices sharing a common face/edge,
every subseq. traversal of common face/edge is reverse of previous traversal

altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

non-face-continuous quasi-face-continuous face-continuous

octree trav.

non-
homodromic

homodromic computer says no

open
How to recognize

quasi-face-continuous

traversals?

palindromic computer says no
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Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then k is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):
convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2:

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then k is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2:

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then k is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2:

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then k is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2:

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then k is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2:

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then k is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2:

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then k is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2:

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then & is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2:

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then & is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2: a = arccos(—1/3):

(special cases of Hill tetrahedra)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then & is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2: a = arccos(—1/3):

(special cases of Hill tetrahedra)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then & is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2: a = arccos(—1/3):

(special cases of Hill tetrahedra)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then & is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2: a = arccos(—1/3):

(special cases of Hill tetrahedra)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then & is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2: a = arccos(—1/3):

(special cases of Hill tetrahedra)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then & is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2: a = arccos(—1/3):

(special cases of Hill tetrahedra)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then & is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):

convex hull of 0, by, by +bs, by + by + b3, where
b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2: a = arccos(—1/3):

(special cases of Hill tetrahedra)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/



Tetrahedral meshes

2D: any A can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T'),
then & is a cubic number (> 8). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after HILL 1895):
convex hull of 0, by, by +bo, by + bs + b3, where

b1,bs, bs are vectors of equal length, with equal angles a < %TF between each pair

a=m7/2: a = arccos(—1/3):

1
X
1 2.3
1 3
k\/§ 1
1

(special cases of Hill tetrahedra)
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Tetrahedral meshes: Hill tetrahedra o # 7/2

Only one way to subdivide into 8 equal, similar tetrahedra.
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Tetrahedral meshes: Hill tetrahedra o # 7/2

Only one way to subdivide into 8 equal, similar tetrahedra.
Four subtetrahedra share a face with only one other — no face-continuous traversal

Xy, Xy subtetrahedron of X in the front, back
Palindromic implies: (A; < Ap) = (By < By) = (Cy < Cy)
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Tetrahedral meshes: Hill tetrahedra o # 7/2

Only one way to subdivide into 8 equal, similar tetrahedra.
Four subtetrahedra share a face with only one other — no face-continuous traversal

Xy, Xy subtetrahedron of X in the front, back
Palindromic implies: (A < Ap) = (By < By) = (Cy < Cy)

— between traversals of A and C, stack with vertices of common edge must be reversed
— B must be traversed between A and C'
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Tetrahedral meshes: Hill tetrahedra o # 7/2

Only one way to subdivide into 8 equal, similar tetrahedra.
Four subtetrahedra share a face with only one other — no face-continuous traversal

— between traversals of A and C, stack with vertices of common edge must be reversed
— B must be traversed between A and C'
— combine conditions on all edges — & no palindromic traversal possible

(still hope for: quasi-face-continuous, homodromic traversal)
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Tetrahedral meshes: liujoedron bisection scheme
Hill tetrahedron a = w/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)

Y N,

quasi-face-continuous, homodromic
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Tetrahedral meshes: liujoedron bisection scheme
Hill tetrahedron a = w/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)

Y N,

quasi-face-continuous, homodromic

/
¥_ l

non-continuous, palindromic
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Summary: results on octree traversals

- traversal known - impossible (almost proven) _ impossible

Cubes Hill-tetrahedra (o # 7/2) Bisected tetrahedra
...-continuous ...-continuous ...-continuous
non- quasi- face- non- quasi- face- non- quasi- face-

non-homoc. [EKE I e - (SR 7 (S

homodromic - h.dr. ? ?

(=]
patinaromic (NS 7 [ - [

Open problems:

e insightful proof of negative results on cubes

e meaningful surface-to-volume measures—and how to compute them?

e what tetrahedra are reptiles?

e (traversals for 1/6, 1/12, 1/24 cube tetrahedra that do not follow bisection scheme?)
e hypercubes in > 3 dimensions?

e simplexes in > 3 dimensions?

e accommodating adaptive cell shapes?
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Summary: results on octree traversals

- traversal known —  impossible (almost proven) _ impossible

Cubes Hill-tetrahedra (o # 7/2) Bisected tetrahedra
...-continuous ...-continuous ...-continuous
non- quasi- face- non- quasi— face- non- quasi- face-

non-homodr. |NEHENN INSEN RS n-h. -
homodromic --_ h.dr. ?

Open problems:
e insightful proof of negative results on cubes
e meaningful surface-to-volume measures—and how to compute them?

e what tetrahedra are reptiles?

e (traversals for 1/6, 1/12, 1/24 cube tetrahedra that do not follow bisection scheme?)
e hypercubes in > 3 dimensions?

e simplexes in > 3 dimensions?

e accommodating adaptive cell shapes?

THANK YOU FOR YOUR ATTENTION
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Bonus slide: 3D Peano traversal

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

[ ]]
[ ]

Requires:
— e storing vertex/edge/face values between iterations
— | e repeated access to v/e/faces on boundaries between cells

e adaptive refinement of the mesh

[T ]]
[ 1] ]
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Bonus slide: 3D Peano traversal

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

[ ]]
[ ]

Requires:

pa— e storing vertex/edge/face values between iterations

— e repeated access to v/e/faces on boundaries between cells
e adaptive refinement of the mesh

[T ]]
[ 1] ]

\

—
~—
~—
—|

WEINZIERL 2009:
current vertex/edge/face values popped from input stack when first visited;

new vertex,/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:
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simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:
e storing vertex/edge/face values between iterations
e repeated access to v/e/faces on boundaries between cells

e adaptive refinement of the mesh
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Bonus slide: 3D Peano traversal

e cache-efficient!

e adaptive refinement = some pushes on stacks:
no complicated vertex/edge/face index!

e easy to parallelize! each processor gets part of traversal
(only diff: values for variables on boundary with other processor are

read/written to different stacks)
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e two stacks for front/back faces (one for odd coordinates, one for even coordinates)
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