
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Space-filling curves

for 3D mesh traversals

Michael Bader

TU München

Tobias Weinzierl

Durham University

Herman Haverkort

TU Eindhoven



Traversing a regular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Finite Element Method:

repeat

for each square cell

retrieve current values
of the four vertices

compute and store new values
for the four vertices

until happy

For example: plate with heat sources and sinks at subset of vertices;

compute steady-state heat distribution and flow.



Traversing a regular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Finite Element Method:

repeat

for each square cell

retrieve current values
of the four vertices

compute and store new values
for the four vertices

until happy

In which order? Row by row?

In what data structure? Matrix?

For example: plate with heat sources and sinks at subset of vertices;

compute steady-state heat distribution and flow.



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

22 23 24 25 26 27 28

29 30 31 32 33

34 35 36 37 38 39 40



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

22 23 24 25 26 27 28

29 30 31 32 33

34 35 36 37 38 39 40

Hilbert order



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

22 23 24 25 26 27 28

29 30 31 32 33

34 35 36 37 38 39 40

Hilbert order



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

22 23 24 25 26 27 28

29 30 31 32 33

34 35 36 37 38 39 40

Hilbert order



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23
29
34
35
30
36
31
37
24
25
19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

22 23 24 25 26 27 28

29 30 31 32 33

34 35 36 37 38 39 40

input outputleft right

Hilbert order

old values in order
of first access

new values in order
of last access

values accessed before
and needed again



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23
29
34
35
30
36
31
37
24
25
19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

22 23 24 25 26 27 28

29 30 31 32 33

34 35 36 37 38 39 40

input outputleft right

Hilbert order

old values in order
of first access

new values in order
of last access

values accessed before
and needed again



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23
29

3435

30
36
31
37
24
25
19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

24 25 26 27 28

30 31 32 33

34 35 36 37 38 39 40

21
15
16
14

22 23

29

input outputleft right

Hilbert order



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23
29

3435

30
36
31
37
24
25
19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

24 25 26 27 28

30 31 32 33

34 35 36 37 38 39 40

21
15
16
14

22 23

29

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23
29

34
35

30

36

31
37
24
25
19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

24 25 26 27 28

31 32 33

34 35 36 37 38 39 40

21
15
16
14

22 23

29

12
13

30

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23
29

34
35

30

36

31
37
24
25
19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

24 25 26 27 28

31 32 33

34 35 36 37 38 39 40

21
15
16
14

22 23

29

12
13

30

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23
29

34
35

30
36

31
37

24
25
19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

24 25 26 27 28

32 33

34 35 36 38 39 40

21
15
16
14

22 23

29

12
13

30 31

37

9
10

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23
29

34
35

30
36

31
37

24
25
19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

24 25 26 27 28

32 33

34 35 36 38 39 40

21
15
16
14

22 23

29

12
13

30 31

37

9
10

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23
29

34
35

30
36

31
37

24
25

19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

26 27 28

32 33

34 35 36 38 39 40

21
15
16
14

22 23

29

12
13

30 31

37

9
10
11
6

24 25

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23
29

34
35

30
36

31
37

24
25

19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

26 27 28

32 33

34 35 36 38 39 40

21
15
16
14

22 23

29

12
13

30 31

37

9
10
11
6

24 25

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23

29

34
35

30
36

31
37

24
25

19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

26 27 28

32 33

34 35 36 38 39 40

21
15
16
14

22 23

29

12
13

30 31

37

9
10
11
6

24 25

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23

29

34
35

30
36

31
37

24
25

19
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

19 20 21

26 27 28

32 33

34 35 36 38 39 40

21
15
16
14

22 23

29

12
13

30 31

37

9
10
11
6

24 25

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23

29

34
35

30
36

31
37

24
2519

20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

21

26 27 28

32 33

34 35 36 38 39 40

21
15
16
14

22 23

29

12
13

30 31

37

9
10
11
624 25

7
5

19 20

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23

29

34
35

30
36

31
37

24
2519

20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

21

26 27 28

32 33

34 35 36 38 39 40

21
15
16
14

22 23

29

12
13

30 31

37

9
10
11
624 25

7
5

19 20

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23

29

34
35

30
36

31
37

24

2519
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

26 27 28

32 33

34 35 36 38 39 40

21

15
16
14

22 23

29

12
13

30 31

37

9
10
11
6

24 25
7
5

19 20 21

1

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23

29

34
35

30
36

31
37

24

2519
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17 18

26 27 28

32 33

34 35 36 38 39 40

21

22 23

29 30 31

37

24 25

19 20 21

15
16
14
12
13
9

10
11
6
7
5
1

input outputleft right



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

22
23

29

34
35

30
36

31
37

24

2519
20

1 2 3 4

5 6 7 8

9 10 11

12 13 14 17 18

26 27 28

32 33

34 35 36 38 39 40

21

15
16

22 23

29 30 31

37

24 25

19 20 21

14
12
13
9

10
11
6
7
5
1
2
3

15 16

input outputleft right
Next iteration: reverse order.

Cell/face/edge variables also supported



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

31
25
2131

25

21

On any edge between two quadrants

order 2nd time = reverse order 1st time
input outputleft right

Hilbert order



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

input outputleft right

Hilbert order

Consecutive squares always share an edge

→(?) well-shaped partitions for load balancing



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Sierpiński order



Traversing an irregular grid

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Sierpiński order



What about 3D?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desiderata:

• octree traversal (cubes/simplices recursively subdivided into 8 parts)

• face-continuous: consecutive cells share a face

• palindromic: for each pair of adjacent cubes/simplices C1 and C2,

second traversal of common face is reverse of first traversal



What about 3D?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desiderata:

• octree traversal (cubes/simplices recursively subdivided into 8 parts)

• face-continuous: consecutive cells share a face

• palindromic: for every set of cubes/simplices sharing a common face/edge,

every subseq. traversal of common face/edge is reverse of previous traversal



What about 3D?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desiderata:

• octree traversal (cubes/simplices recursively subdivided into 8 parts)

• face-continuous: consecutive cells share a face

• palindromic: for every set of cubes/simplices sharing a common face/edge,

every subseq. traversal of common face/edge is reverse of previous traversal



What about 3D?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desiderata:

• octree traversal (cubes/simplices recursively subdivided into 8 parts)

• face-continuous: consecutive cells share a face

• palindromic: for every set of cubes/simplices sharing a common face/edge,

every subseq. traversal of common face/edge is reverse of previous traversal



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desired: palindromic, face-continuous octree traversal

Bader 2013: finds no solution within a restricted framework



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desired: palindromic, face-continuous octree traversal

Bader 2013: finds no solution within a restricted framework

Weinzierl (pers. conf.):



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desired: palindromic, face-continuous octree traversal

Bader 2013: finds no solution within a restricted framework

Weinzierl (pers. conf.):



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desired: palindromic, face-continuous octree traversal

Bader 2013: finds no solution within a restricted framework

Weinzierl (pers. conf.):



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desired: palindromic, face-continuous octree traversal

Bader 2013: finds no solution within a restricted framework

Weinzierl (pers. conf.):

Brute-force search 4× 4× 4 finds solutions, but all self-similar recursive expansions fail.

Brute-force search 8× 8× 8 is infeasible (and would still generate false positives).



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Finds 8384, for example:



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Finds 8384, for example:



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

142



163

199 203

What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

15

69
142



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations

Try to refine 4× 4× 4 traversals from S into 8× 8× 8 traversals by

replacing 2× 2× 2 traversals in octants by 4× 4× 4 traversals from S′



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations

?

?

?

?

?

?

?

?

?

?

??

For each traversal from S:

exhaustive search of all choices of patterns ∈ {0, ..., 255} for 12 interior faces:

verify for each octant:

S′ contains 4× 4× 4 traversal with matching octant order and face patterns



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations

?

?

?

?

?

?

?

?

?

?

??

For each traversal from S:

exhaustive search of all choices of patterns ∈ {0, ..., 255} for 12 interior faces:

verify for each octant:

S′ contains 4× 4× 4 traversal with matching octant order and face patterns



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations

?

?

?

?

?

?

?

?

?

?

??

unsuccessful for all but
410 traversals from S

(no 8× 8× 8-refinement exists)

For each traversal from S:

exhaustive search of all choices of patterns ∈ {0, ..., 255} for 12 interior faces:

verify for each octant:

S′ contains 4× 4× 4 traversal with matching octant order and face patterns



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations

?

?

?

410

410 19 680

?

?

?

?

?

?

?

??

unsuccessful for all but
410 traversals from S

(no 8× 8× 8-refinement exists)

For each traversal from S:

exhaustive search of all choices of patterns ∈ {0, ..., 255} for 12 interior faces:

verify for each octant:

S′ contains 4× 4× 4 traversal with matching octant order and face patterns



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations

?

?

?

410

410 19 680

?

?

?

?

?

?

?

??

For each traversal from S:

exhaustive search of all choices of patterns ∈ {0, ..., 255} for 12 interior faces:

verify for each octant:

S′ contains 4× 4× 4 traversal with matching octant order and face patterns

unsuccessful for all but
1 traversal from S

(no 16×16×16-refinement)



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations

?

?

?

410

410 19 680

1

?

?

?

?

?

?

?

??

For each traversal from S:

exhaustive search of all choices of patterns ∈ {0, ..., 255} for 12 interior faces:

verify for each octant:

S′ contains 4× 4× 4 traversal with matching octant order and face patterns

unsuccessful for all but
1 traversal from S

(no 16×16×16-refinement)

48



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Generate S = all 4× 4× 4 traversals that:

• traverse octants one by one;

• are face-continuous;

• have matching patterns on opposite sides of each of the twelve interior 2×2-faces.

or or

Identify face patterns

by id ∈ {0, ..., 255}

Finds 8384, for example:

S′ =

48 × 8384 = 402 432

traversals obtained by

reflections and rotations

?

?

?

410

410 19 680

1

no solution found →
no palindr., face-contin.
octree traversal exists

?

?

?

?

?

?

?

??

For each traversal from S:

exhaustive search of all choices of patterns ∈ {0, ..., 255} for 12 interior faces:

verify for each octant:

S′ contains 4× 4× 4 traversal with matching octant order and face patterns

48



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

3D Peano curve (applied by Weinzierl 2009):

in each

subcube,

reflect pattern

to connect to

previous and

next subcube

Desired: palindromic, face-continuous octree traversal

Cons:

• recursive subdivision into 27 subcubes → adaptive refinement less adaptive;

• partitions have larger surface-for-volume than with octree traversals (Sasburg 2011).



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Faloutsos’s traversal (generalized from Faloutsos 1986)

Desired: palindromic, face-continuous octree traversal

Octants A and B share face f → traversal in B is reversed image of A under reflection in f



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Faloutsos’s traversal (generalized from Faloutsos 1986)

Desired: palindromic, face-continuous octree traversal

Octants A and B share face f → traversal in B is reversed image of A under reflection in f

L:

stack for pushing
popping vertices on

left

face

R: right

B: bottom

T: top

F: front

H: hind

also on R
also on L

also on T
also on Bon 7th stack



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Morton order (Morton 1966): no rotations or reflections

Desired: palindromic, face-continuous octree traversal



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Morton order (Morton 1966): no rotations or reflections

Desired: palindromic, face-continuous octree traversal



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Morton order (Morton 1966): no rotations or reflections

Desired: palindromic, face-continuous octree traversal

homodromic: 2nd traversal of face
= reverse of 1st or the same



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Morton order (Morton 1966): no rotations or reflections

Desired: palindromic, face-continuous octree traversal

quasi-face-continuous: interior of union of consecutive set of cells
has O(1) connected components.

homodromic: 2nd traversal of face
= reverse of 1st or the same



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Morton order (Morton 1966): no rotations or reflections

Desired: palindromic, face-continuous octree traversal

L:

stack for pushing
popping vertices on

left

face

R: right

B: bottom

T: top

F: front

H: hind

pushed onto R;
turned onto L
after 4th octant

pushed onto T ;
turned onto B
aft. 2nd/6th oct.

pushed onto H;
turned onto F
aft. 1/3/5/7th

quasi-face-continuous: interior of union of consecutive set of cells
has O(1) connected components.

homodromic: 2nd traversal of face
= reverse of 1st or the same



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desiderata:

• octree traversal (cubes/simplices recursively subdivided into 8 parts)

• face-continuous: consecutive cells share a face

altern.: quasi-face-cont.: interior of union of set of consecutive cells has O(1) components

• palindromic: for every set of adjacent cubes/simplices sharing a common face/edge,
every subseq. traversal of common face/edge is reverse of previous traversal

altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

non-
homodromic

homodromic

palindromic

non-face-continuous quasi-face-continuous face-continuous

1000s of generalized
Hilbert curves

Morton traversal

Faloutsos’s traversal computer says no

octree trav.



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desiderata:

• octree traversal (cubes/simplices recursively subdivided into 8 parts)

• face-continuous: consecutive cells share a face

altern.: quasi-face-cont.: interior of union of set of consecutive cells has O(1) components

• palindromic: for every set of adjacent cubes/simplices sharing a common face/edge,
every subseq. traversal of common face/edge is reverse of previous traversal

altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

non-
homodromic

homodromic

palindromic

non-face-continuous quasi-face-continuous face-continuous

1000s of generalized
Hilbert curves

Morton traversal

Faloutsos’s traversal computer says no

octree trav.

computer says no



What about cubes?

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Desiderata:

• octree traversal (cubes/simplices recursively subdivided into 8 parts)

• face-continuous: consecutive cells share a face

altern.: quasi-face-cont.: interior of union of set of consecutive cells has O(1) components

• palindromic: for every set of adjacent cubes/simplices sharing a common face/edge,
every subseq. traversal of common face/edge is reverse of previous traversal

altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

non-
homodromic

homodromic

palindromic

non-face-continuous quasi-face-continuous face-continuous

1000s of generalized
Hilbert curves

Morton traversal

Faloutsos’s traversal computer says no

octree trav.

open

How to recognize
quasi-face-continuous

traversals?

computer says no



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

α = π/2:



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

α = π/2:



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

α = π/2:



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

α = π/2:



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

α = π/2:



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

α = π/2:



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

α = π/2:



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

α = π/2:



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

α = π/2: α = arccos(−1/3):

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

α = π/2: α = arccos(−1/3):

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

α = π/2: α = arccos(−1/3):

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

α = π/2: α = arccos(−1/3):

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

α = π/2: α = arccos(−1/3):

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

α = π/2: α = arccos(−1/3):

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

α = π/2: α = arccos(−1/3):

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

2
3

√
3

2
3

√
31

1

1

1

α = π/2: α = arccos(−1/3):

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

2
3

√
3

2
3

√
31

1

1

1

α = π/2: α = arccos(−1/3):

(Liu & Joe 1994)

non-Hill:

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

2
3

√
3

2
3

√
31

1

1

1

α = π/2: α = arccos(−1/3):

(Liu & Joe 1994)

non-Hill:

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

2
3

√
3

2
3

√
31

1

1

1

α = π/2: α = arccos(−1/3):

(Liu & Joe 1994)

non-Hill:

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

2
3

√
3

2
3

√
31

1

1

1

α = π/2: α = arccos(−1/3):

(Liu & Joe 1994)

non-Hill:

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

2
3

√
3

2
3

√
31

1

1

1

α = π/2: α = arccos(−1/3):

(Liu & Joe 1994)

non-Hill:

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

2
3

√
3

2
3

√
31

1

1

1

α = π/2: α = arccos(−1/3):

(Liu & Joe 1994)

non-Hill:

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

2
3

√
3

2
3

√
31

1

1

1

α = π/2: α = arccos(−1/3):

(Liu & Joe 1994)

non-Hill:

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

2
3

√
3

2
3

√
31

1

1

1

2
3

√
6

2
3

√
3

2
3

√
3

1

1

1

α = π/2: α = arccos(−1/3):

(Liu & Joe 1994)

non-Hill:

(special cases of Hill tetrahedra)



Tetrahedral meshes

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2D: any 4 can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T ),
then k is a cubic number (≥ 8). (Matousek & Savernova 2011)

Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):

convex hull of 0, b1, b1 + b2, b1 + b2 + b3, where
b1, b2, b3 are vectors of equal length, with equal angles α < 2

3π between each pair

1
1

1
√
3

√
2

√
2

2
3

√
3

2
3

√
31

1

1

1

2
3

√
6

2
3

√
3

2
3

√
3

1

1

1

α = π/2: α = arccos(−1/3):

(Liu & Joe 1994)

non-Hill:

(special cases of Hill tetrahedra)



Tetrahedral meshes: Hill tetrahedra α 6= π/2

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Only one way to subdivide into 8 equal, similar tetrahedra.



Tetrahedral meshes: Hill tetrahedra α 6= π/2

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Only one way to subdivide into 8 equal, similar tetrahedra.

Four subtetrahedra share a face with only one other → no face-continuous traversal



Tetrahedral meshes: Hill tetrahedra α 6= π/2

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Only one way to subdivide into 8 equal, similar tetrahedra.

Four subtetrahedra share a face with only one other → no face-continuous traversal



Tetrahedral meshes: Hill tetrahedra α 6= π/2

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Only one way to subdivide into 8 equal, similar tetrahedra.

A

B

C

Ab

Af

Bb

Bf Cf

Cb

Xf , Xb: subtetrahedron of X in the front, back

Palindromic implies: (Af ≺ Ab) = (Bb ≺ Bf ) = (Cf ≺ Cb)

Four subtetrahedra share a face with only one other → no face-continuous traversal



Tetrahedral meshes: Hill tetrahedra α 6= π/2

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Only one way to subdivide into 8 equal, similar tetrahedra.

A

B

C

Ab

Af

Bb

Bf Cf

Cb

Xf , Xb: subtetrahedron of X in the front, back

Palindromic implies: (Af ≺ Ab) = (Bb ≺ Bf ) = (Cf ≺ Cb)

→ between traversals of A and C, stack with vertices of common edge must be reversed

→ B must be traversed between A and C

Four subtetrahedra share a face with only one other → no face-continuous traversal



Tetrahedral meshes: Hill tetrahedra α 6= π/2

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Only one way to subdivide into 8 equal, similar tetrahedra.

→ between traversals of A and C, stack with vertices of common edge must be reversed

→ B must be traversed between A and C

→ combine conditions on all edges → no palindromic traversal possible

A

B

C

(still hope for: quasi-face-continuous, homodromic traversal)

Four subtetrahedra share a face with only one other → no face-continuous traversal



Tetrahedral meshes: liujoedron bisection scheme

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 1 2 1

2

quasi-face-continuous, homodromic

Hill tetrahedron α = π/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)



Tetrahedral meshes: liujoedron bisection scheme

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2
3

√
6

2
3

√
3

1

2
3

√
3

1

1

1 2 1 2 1

2

quasi-face-continuous, homodromic

Hill tetrahedron α = π/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)



Tetrahedral meshes: liujoedron bisection scheme

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

2
3

√
6

2
3

√
3

1

2
3

√
3

1

1

1 2 1 2 1

2

quasi-face-continuous, homodromic

Hill tetrahedron α = π/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)



Tetrahedral meshes: liujoedron bisection scheme

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 1 2 1

2

quasi-face-continuous, homodromic

Hill tetrahedron α = π/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)



Tetrahedral meshes: liujoedron bisection scheme

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 1 2 1

2

quasi-face-continuous, homodromic

Hill tetrahedron α = π/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)



Tetrahedral meshes: liujoedron bisection scheme

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 1 2 1

2

quasi-face-continuous, homodromic

Hill tetrahedron α = π/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)



Tetrahedral meshes: liujoedron bisection scheme

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 1 2 1

2

quasi-face-continuous, homodromic

Hill tetrahedron α = π/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)



Tetrahedral meshes: liujoedron bisection scheme

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 1 2 1

2

quasi-face-continuous, homodromic

Hill tetrahedron α = π/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)



Tetrahedral meshes: liujoedron bisection scheme

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 1 2 1

2

quasi-face-continuous, homodromic

Hill tetrahedron α = π/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)



Tetrahedral meshes: liujoedron bisection scheme

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 1 2 1

2

quasi-face-continuous, homodromic

Hill tetrahedron α = π/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)



Tetrahedral meshes: liujoedron bisection scheme

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

1 2 1 2 1

2

quasi-face-continuous, homodromic

non-continuous, palindromic

1 2

1 2

2 1

1

2

Hill tetrahedron α = π/2 (1/6 cube) Liujoedron (1/12 cube) Half-liujoedron (1/24 cube)



Summary: results on octree traversals

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

...-continuous:
non- quasi- face-

non-homodr.

homodromic

palindromic

Cubes

?

impossible (almost proven)+ –traversal known impossible–

...-continuous:
non- quasi- face-

Hill-tetrahedra (α 6= π/2)

...-continuous:
non- quasi- face-

Bisected tetrahedra

+++

+

+

+

+ +

+

+

+

+ –

–

–– – –

–

–

–

–

–

? ?

?n.-h.

h.dr.

p.dr.

Open problems:

• insightful proof of negative results on cubes

• meaningful surface-to-volume measures—and how to compute them?

• what tetrahedra are reptiles?

• (traversals for 1/6, 1/12, 1/24 cube tetrahedra that do not follow bisection scheme?)

• hypercubes in > 3 dimensions?

• simplexes in > 3 dimensions?

• accommodating adaptive cell shapes?



Summary: results on octree traversals

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

...-continuous:
non- quasi- face-

non-homodr.

homodromic

palindromic

Cubes

?

THANK YOU FOR YOUR ATTENTION

impossible (almost proven)+ –traversal known impossible–

...-continuous:
non- quasi- face-

Hill-tetrahedra (α 6= π/2)

...-continuous:
non- quasi- face-

Bisected tetrahedra

+++

+

+

+

+ +

+

+

+

+ –

–

–– – –

–

–

–

–

–

? ?

?n.-h.

h.dr.

p.dr.

Open problems:

• insightful proof of negative results on cubes

• meaningful surface-to-volume measures—and how to compute them?

• what tetrahedra are reptiles?

• (traversals for 1/6, 1/12, 1/24 cube tetrahedra that do not follow bisection scheme?)

• hypercubes in > 3 dimensions?

• simplexes in > 3 dimensions?

• accommodating adaptive cell shapes?



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Solid object with heat sources and sinks on boundary;

simulate heat distribution on vertices, flow through faces
by repeatedly iterating over all cells.

Requires:

• storing vertex/edge/face values between iterations

• repeated access to v/e/faces on boundaries between cells

• adaptive refinement of the mesh



Bonus slide: 3D Peano traversal

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

Weinzierl 2009:

current vertex/edge/face values popped from input stack when first visited;

new vertex/edge/face values pushed on output stack when last visited;

alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

• two stacks for horizontal faces (one for odd heights, one for even heights)

• two stacks for left/right faces (one for odd coordinates, one for even coordinates)

• two stacks for front/back faces (one for odd coordinates, one for even coordinates)

• cache-efficient!

• adaptive refinement = some pushes on stacks:
no complicated vertex/edge/face index!

• easy to parallelize! each processor gets part of traversal

(only diff: values for variables on boundary with other processor are

read/written to different stacks)


